File size: 7,717 Bytes
b8b90a1
9e0ec52
716a5c8
5b72b9c
1cb9abe
c59b7ce
 
8e7d1a1
8e0562f
 
 
bb46b5e
9bf5030
9e0ec52
c10da7d
cb6c54f
 
 
 
 
 
 
 
 
 
8f70d65
cb6c54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
007432f
e0ec178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144372f
e0ec178
 
 
 
 
 
 
 
 
8e0562f
9bf5030
c0c99f4
9bf5030
 
 
 
b2ae908
9bf5030
 
 
 
 
 
 
 
1cb9abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10da7d
4b67ab1
 
 
 
 
 
 
 
 
 
 
 
 
c10da7d
9e0ec52
ed267db
3cf8730
ed267db
3cf8730
d1568ce
8f70d65
716a5c8
d1568ce
89d512b
ea6e8d7
8e7d1a1
 
 
 
9e0ec52
ea6e8d7
9e0ec52
cb6c54f
923b0ed
 
e0ec178
61c27d6
 
4b67ab1
144372f
 
1cb9abe
 
9e0ec52
89d512b
9e0ec52
 
3cf8730
 
ed267db
9e0ec52
ed267db
 
 
8e7d1a1
 
 
 
9e0ec52
 
8e7d1a1
9e0ec52
c10da7d
 
3925d2a
 
 
c10da7d
3cf8730
9e0ec52
3925d2a
9e0ec52
8e7d1a1
9e0ec52
3925d2a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from smolagents import CodeAgent,  LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter
import yaml
from PIL import Image
import requests
from io import BytesIO

import whisper

# Simulated additional tools (implementation depends on external APIs or setup)
#@tool
#def GoogleSearchTool(query: str) -> str:
#    """Tool for performing Google searches using Custom Search JSON API
#    Args:
#        query (str): Search query string
#    Returns:
#        str: Formatted search results
#    """
#    cse_id = os.environ.get("GOOGLE_CSE_ID")
#    if not api_key or not cse_id:

#        raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
#    url = "https://www.googleapis.com/customsearch/v1"
#    params = {
#        "key": api_key,
#        "cx": cse_id,
#        "q": query,
#        "num": 5  # Number of results to return
#    }
#    try:
#        response = requests.get(url, params=params)
#        response.raise_for_status()
#        results = response.json().get("items", [])
#        return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
#    except Exception as e:
#        return f"Error performing Google search: {str(e)}"

#@tool
#def ImageAnalysisTool(question: str, model: LiteLLMModel) -> str:
#    """Tool for analyzing images mentioned in the question.
#    Args:
#        question (str): The question text which may contain an image URL.
#    Returns:
#        str: Image description or error message.
#    """
#    # Extract URL from question using regex
#    url_pattern = r'https?://\S+'
#    match = re.search(url_pattern, question)
#    if not match:
#        return "No image URL found in the question."
#    image_url = match.group(0)
#
#    headers = {
#        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
#    }
#    try:
#        response = requests.get(image_url, headers=headers)
#        response.raise_for_status()
#        image = Image.open(BytesIO(response.content)).convert("RGB")
#    except Exception as e:
#        return f"Error fetching image: {e}"
#
#    agent = CodeAgent(
#        tools=[],
#        model=model,
#        max_steps=10,

#        verbosity_level=2
#    )
#
#    response = agent.run(
#        "Describe in details the chess position you see in the image.",
#        images=[image]
#    )
#    
#    return f"The image description: '{response}'"

@tool
def SpeechToTextTool(audio_path: str) -> str:
    """Tool for converting an audio file to text using OpenAI Whisper.
    Args:
        audio_path (str): Path to audio file
    Returns:
        str: audio speech text
    """
    model = whisper.load_model("base")

    if not os.path.exists(audio_path):
            return f"Error: File not found at {audio_path}"
    result = model.transcribe(audio_path)
    return result.get("text", "")

class ExcelReaderTool(Tool):
    name = "excel_reader"
    description = """
    This tool reads and processes Excel files (.xlsx, .xls).
    It can extract data, calculate statistics, and perform data analysis on spreadsheets.
    """
    inputs = {
        "excel_path": {
            "type": "string",
            "description": "The path to the Excel file to read",
        },
        "sheet_name": {
            "type": "string",
            "description": "The name of the sheet to read (optional, defaults to first sheet)",
            "nullable": True
        }
    }
    output_type = "string"
    
    def forward(self, excel_path: str, sheet_name: str = None) -> str:
        """
        Reads and processes the given Excel file.
        """
        try:
            # Check if the file exists
            if not os.path.exists(excel_path):
                return f"Error: Excel file not found at {excel_path}"
                
            import pandas as pd
            
            # Read the Excel file
            if sheet_name:
                df = pd.read_excel(excel_path, sheet_name=sheet_name)
            else:
                df = pd.read_excel(excel_path)
                
            # Get basic info about the data
            info = {
                "shape": df.shape,
                "columns": list(df.columns),
                "dtypes": df.dtypes.to_dict(),
                "head": df.head(5).to_dict()
            }
            
            # Return formatted info
            result = f"Excel file: {excel_path}\n"
            result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
            result += "Columns:\n"
            for col in info['columns']:
                result += f"- {col} ({info['dtypes'].get(col)})\n"
            
            result += "\nPreview (first 5 rows):\n"
            result += df.head(5).to_string()
            
            return result
            
        except Exception as e:
            return f"Error reading Excel file: {str(e)}"

#@tool
#class LocalFileAudioTool:
#    """Tool for transcribing audio files"""
#    
#    @tool
#    def transcribe(self, file_path: str) -> str:
#        """Transcribe audio from file
#        Args:
#            file_path (str): Path to audio file
#        Returns:
#            str: Transcription text
#        """
#        return f"Transcribed audio from '{file_path}' (simulated)."

class MagAgent:
    def __init__(self, rate_limiter: Optional[Limiter] = None):
        """Initialize the MagAgent with search tools."""
        self.rate_limiter = rate_limiter
        print("Initializing MagAgent with search tools...")
        model = LiteLLMModel(
            model_id="gemini/gemini-2.0-flash",
            api_key= os.environ.get("GEMINI_KEY"),
            max_tokens=8192
        )

        # Load prompt templates
        with open("prompts.yaml", 'r') as stream:
            prompt_templates = yaml.safe_load(stream)
        
        self.agent = CodeAgent(
            model= model,
            tools=[
#                GoogleSearchTool,
                DuckDuckGoSearchTool(),
                WikipediaSearchTool(),
#                ImageAnalysisTool,
                SpeechToTextTool,
                ExcelReaderTool()
#                LocalFileAudioTool()
            ],
            verbosity_level=2,
            add_base_tools=True,
            max_steps=20
        )
        print("MagAgent initialized.")

    async def __call__(self, question: str) -> str:
        """Process a question asynchronously using the MagAgent."""
        print(f"MagAgent received question (first 50 chars): {question[:50]}...")
        
        try:
            if self.rate_limiter:
                while not self.rate_limiter.consume(1):
                    await asyncio.sleep(60 / RATE_LIMIT)
            # Define a task with fallback search logic
            task = (
                f"Answer the following question accurately and concisely: {question}\n"
            )
            response = await asyncio.to_thread(
                self.agent.run,
                task=task
            )

            # Ensure response is a string, fixing the integer error
            response = str(response) 
            if response is None: 
                print(f"No answer found.")
       
            print(f"MagAgent response: {response[:50]}...")
            return response
        
        except Exception as e:
            error_msg = f"Error processing question: {str(e)}. Check API key or network connectivity."
            print(error_msg)
            return error_msg