Spaces:
Running
Running
File size: 9,894 Bytes
85971d9 483d915 2000849 85971d9 aea1065 b63180f 7cc7f81 aea1065 b63180f 4113b44 b63180f 4113b44 b63180f aea1065 b63180f 85971d9 483d915 85971d9 b63180f 483d915 85971d9 c309ccd 85971d9 483d915 85971d9 483d915 85971d9 483d915 85971d9 c309ccd 85971d9 483d915 85971d9 483d915 85971d9 483d915 85971d9 483d915 b63180f 483d915 b63180f 483d915 b63180f 85971d9 483d915 85971d9 483d915 85971d9 89858c7 85971d9 89858c7 85971d9 89858c7 85971d9 5d12401 85971d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import aiohttp
import asyncio
import json
from agent import MagAgent
import base64
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Rate limiting configuration
MAX_CONCURRENT_REQUESTS = 1 # Adjust based on performance needs
REQUEST_DELAY = 8.0 # 2 seconds delay to meet 30 RPM
# LANGFUSE_PUBLIC_KEY="pk-lf-7f0677a5-09f7-4508-88a2-bf7f44ee172c"
# LF_SECRET_KEY = os.environ.get("LANGFUSE_SECRET_KEY")
# if LF_SECRET_KEY is None:
# raise EnvironmentError("LANGFUSE_SECRET_KEY environment variable is not set.")
# LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LF_SECRET_KEY}".encode()).decode()
# from opentelemetry.sdk.trace import TracerProvider
# from openinference.instrumentation.smolagents import SmolagentsInstrumentor
# from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
# from opentelemetry.sdk.trace.export import SimpleSpanProcessor
# os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
# os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
# trace_provider = TracerProvider()
# trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint="https://cloud.langfuse.com/api/public/otel")))
# SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
async def fetch_questions(session: aiohttp.ClientSession, questions_url: str) -> list:
"""Fetch questions asynchronously."""
try:
async with session.get(questions_url, timeout=15) as response:
response.raise_for_status()
questions_data = await response.json()
if not questions_data:
print("Fetched questions list is empty.")
return []
print(f"Fetched {len(questions_data)} questions.")
return questions_data
except aiohttp.ClientError as e:
print(f"Error fetching questions: {e}")
return None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return None
async def submit_answers(session: aiohttp.ClientSession, submit_url: str, submission_data: dict) -> dict:
"""Submit answers asynchronously."""
try:
async with session.post(submit_url, json=submission_data, timeout=60) as response:
response.raise_for_status()
return await response.json()
except aiohttp.ClientResponseError as e:
print(f"Submission Failed: Server responded with status {e.status}. Detail: {e.message}")
return None
except aiohttp.ClientError as e:
print(f"Submission Failed: Network error - {e}")
return None
except Exception as e:
print(f"An unexpected error occurred during submission: {e}")
return None
async def process_question(agent, question_text: str, task_id: str, semaphore: asyncio.Semaphore, results_log: list):
"""Process a single question with rate limiting."""
async with semaphore:
try:
submitted_answer = await agent(question_text)
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return {"task_id": task_id, "submitted_answer": submitted_answer}
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
return None
finally:
await asyncio.sleep(REQUEST_DELAY) # Enforce delay after each request
async def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions asynchronously, runs the MagAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent =MagAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions Asynchronously
async with aiohttp.ClientSession() as session:
questions_data = await fetch_questions(session, questions_url)
if questions_data is None:
return "Error fetching questions.", None
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
# 3. Run Agent on Questions
# Initialize semaphore and results log
semaphore = asyncio.Semaphore(MAX_CONCURRENT_REQUESTS)
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
tasks = [
process_question(agent, item["question"], item["task_id"], semaphore, results_log)
for item in questions_data
if item.get("task_id") and item.get("question") is not None
]
results = await asyncio.gather(*tasks)
answers_payload = [r for r in results if r is not None]
# for item in questions_data:
# task_id = item.get("task_id")
# question_text = item.get("question")
# if not task_id or question_text is None:
# print(f"Skipping item with missing task_id or question: {item}")
# continue
# try:
# submitted_answer = await agent(question_text)
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# except Exception as e:
# print(f"Error running agent on task {task_id}: {e}")
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit Answers Asynchronously
result_data = await submit_answers(session, submit_url, submission_data)
if result_data is None:
status_message = "Submission Failed."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Magus Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
---
**Notes:**
The agent uses asynchronous operations for efficiency. Answers are processed and submitted asynchronously.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Mag Agent Evaluation...")
demo.launch(debug=True, share=False) |