File size: 4,622 Bytes
a84e63c
9e0ec52
716a5c8
8e7d1a1
8e0562f
 
 
9e0ec52
c10da7d
cb6c54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c9ef67
4433b73
8e0562f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
858d834
8e0562f
 
 
 
 
 
 
 
 
 
 
 
90b74a8
8e0562f
 
 
 
 
 
 
c10da7d
4b67ab1
 
 
 
 
 
 
 
 
 
 
 
 
c10da7d
9e0ec52
 
3cf8730
 
d1568ce
bc906fa
716a5c8
d1568ce
89d512b
ea6e8d7
8e7d1a1
 
 
 
9e0ec52
ea6e8d7
9e0ec52
cb6c54f
a84e63c
8e7d1a1
1c9ef67
4b67ab1
9e0ec52
 
89d512b
9e0ec52
 
3cf8730
 
9e0ec52
8e7d1a1
 
 
 
9e0ec52
 
8e7d1a1
9e0ec52
c10da7d
 
 
 
8e7d1a1
 
 
3cf8730
9e0ec52
 
8e7d1a1
9e0ec52
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from smolagents import CodeAgent, DuckDuckGoSearchTool, WikipediaSearchTool, LiteLLMModel, tool, load_tool # HfApiModel, OpenAIServerModel
import asyncio
import os
import yaml
from PIL import Image
import requests
from io import BytesIO

# Simulated additional tools (implementation depends on external APIs or setup)
#@tool
#def GoogleSearchTool(query: str) -> str:
#    """Tool for performing Google searches using Custom Search JSON API
#    Args:
#        query (str): Search query string
#    Returns:
#        str: Formatted search results
#    """
#    cse_id = os.environ.get("GOOGLE_CSE_ID")
#    if not api_key or not cse_id:
#        raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
#    url = "https://www.googleapis.com/customsearch/v1"
#    params = {
#        "key": api_key,
#        "cx": cse_id,
#        "q": query,
#        "num": 5  # Number of results to return
#    }
#    try:
#        response = requests.get(url, params=params)
#        response.raise_for_status()
#        results = response.json().get("items", [])
#        return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
#    except Exception as e:
#        return f"Error performing Google search: {str(e)}"
        
@tool
def ImageAnalysisTool(image_path: str) -> str:
    """Tool for analyzing images using computer vision
    Args:
        image_path (str): Path to image file
    Returns:
        str: Image description
    """

    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" 
    }
    response = requests.get(image_path,headers=headers)
    image = Image.open(BytesIO(response.content)).convert("RGB")

    model = LiteLLMModel(
        model_id="gemini/gemini-2.0-flash",
        api_key= os.environ.get("GEMINI_KEY"),
        max_tokens=8192
    )

    agent = CodeAgent(
        tools=[],
        model=model,
        max_steps=20,
        verbosity_level=2
    )

    response = agent.run(
        """
        Describe what you see in the image in details.
        """,
        images=image
    )
    
    return f"The image description: '{response}'"


#@tool
#class LocalFileAudioTool:
#    """Tool for transcribing audio files"""
#    
#    @tool
#    def transcribe(self, file_path: str) -> str:
#        """Transcribe audio from file
#        Args:
#            file_path (str): Path to audio file
#        Returns:
#            str: Transcription text
#        """
#        return f"Transcribed audio from '{file_path}' (simulated)."

class MagAgent:
    def __init__(self):
        """Initialize the MagAgent with search tools."""
        print("Initializing MagAgent with search tools...")
        model = LiteLLMModel(
            model_id="gemini/gemini-2.0-flash-lite",
            api_key= os.environ.get("GEMINI_KEY"),
            max_tokens=8192
        )

        # Load prompt templates
        with open("prompts.yaml", 'r') as stream:
            prompt_templates = yaml.safe_load(stream)
        
        self.agent = CodeAgent(
            model= model,
            tools=[
#                GoogleSearchTool,
                DuckDuckGoSearchTool(),
                WikipediaSearchTool(),
                ImageAnalysisTool,
#                LocalFileAudioTool()
            ]
        )
        print("MagAgent initialized.")

    async def __call__(self, question: str) -> str:
        """Process a question asynchronously using the MagAgent."""
        print(f"MagAgent received question (first 50 chars): {question[:50]}...")
        try:
            # Define a task with fallback search logic
            task = (
                f"Answer the following question accurately and concisely: {question}\n"
            )
            response = await asyncio.to_thread(
                self.agent.run,
                task=task
            )

            # Ensure response is a string, fixing the integer error
            response = str(response) if response is not None else "No answer found."
       
            if not response or "No Wikipedia page found" in response:
                # Fallback response if search fails
                response = "Unable to retrieve exact data. Please refine the question or check external sources."
            print(f"MagAgent response: {response[:50]}...")
            return response
        except Exception as e:
            error_msg = f"Error processing question: {str(e)}. Check API key or network connectivity."
            print(error_msg)
            return error_msg