Spaces:
Running
Running
File size: 17,023 Bytes
b8b90a1 9e0ec52 716a5c8 5b72b9c 1cb9abe c59b7ce 36d03df 8e7d1a1 ff92442 8e0562f ab5793d 9bf5030 56f5d7e 36d03df 9e0ec52 f34d3d9 007432f 892d2c3 8e0562f f34d3d9 ab5793d 36d03df ab5793d 26b5e38 ab5793d 36d03df 4d51e39 ab5793d 0ec45cf 4d51e39 ab5793d 4d51e39 0ec45cf ab5793d 4d51e39 36d03df 4d51e39 36d03df 4d51e39 ab5793d 36d03df ab5793d 4d51e39 ab5793d de0487a 9bf5030 de0487a 9bf5030 e31dd8e de0487a 9bf5030 1cb9abe 2e0c36d 1cb9abe ce96e25 1cb9abe ab5793d 1cb9abe c10da7d 91e0b0d 659aaec 91e0b0d 11de599 91e0b0d c34d774 ff92442 c34d774 ff92442 c34d774 ff92442 659aaec 91e0b0d 659aaec 91e0b0d 36d03df c10da7d 36d03df 9e0ec52 ed267db 3cf8730 2ff2939 98eeb83 3cf8730 ac5cad0 d1568ce ac5cad0 89d512b ac5cad0 8e7d1a1 36d03df 8e7d1a1 9e0ec52 ea6e8d7 9e0ec52 36d03df f34d3d9 892d2c3 8706eb6 39c4dad 91e0b0d ce96e25 36d03df 144372f ce96e25 a518e5e 1cb9abe 2e0c36d 9e0ec52 89d512b 9e0ec52 65b3309 3cf8730 a966bbf 9e0ec52 ed267db 65b3309 8e7d1a1 ce96e25 05cb108 8e7d1a1 65b3309 98eeb83 9e0ec52 8e7d1a1 9e0ec52 65b3309 3cf8730 9e0ec52 65b3309 9e0ec52 ce96e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter, MemoryStorage
import yaml
from PIL import Image, ImageOps
import requests
from io import BytesIO
from markdownify import markdownify
import whisper
import time
import shutil
import traceback
@tool
def GoogleSearchTool(query: str) -> str:
"""Tool for performing Google searches using Custom Search JSON API
Args:
query (str): Search query string
Returns:
str: Formatted search results
"""
cse_id = os.environ.get("GOOGLE_CSE_ID")
if not api_key or not cse_id:
raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": api_key,
"cx": cse_id,
"q": query,
"num": 5 # Number of results to return
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
results = response.json().get("items", [])
return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
except Exception as e:
return f"Error performing Google search: {str(e)}"
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
output_type = "string"
def forward(self, url: str) -> str:
try:
response = requests.get(url, timeout=20)
response.raise_for_status()
markdown_content = markdownify(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
from smolagents.utils import truncate_content
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except requests.exceptions.RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False
class DownloadTaskAttachmentTool(Tool):
name = "download_file"
description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
output_type = "string"
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
self.is_initialized = False
self.rate_limiter = rate_limiter
self.default_api_url = default_api_url
def forward(self, task_id: str) -> str:
file_url = f"{self.default_api_url}/files/{task_id}"
print(f"Downloading file for task ID {task_id} from {file_url}...")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
time.sleep(60 / 15) # Assuming 15 RPM
response = requests.get(file_url, stream=True, timeout=15)
response.raise_for_status()
# Determine file extension based on Content-Type
content_type = response.headers.get('Content-Type', '').lower()
if 'image/png' in content_type:
extension = '.png'
elif 'image/jpeg' in content_type:
extension = '.jpg'
elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
extension = '.xlsx'
elif 'audio/mpeg' in content_type:
extension = '.mp3'
elif 'application/pdf' in content_type:
extension = '.pdf'
elif 'text/x-python' in content_type:
extension = '.py'
else:
return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
local_file_path = f"downloads/{task_id}{extension}"
os.makedirs("downloads", exist_ok=True)
with open(local_file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded successfully: {local_file_path}")
return local_file_path
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
return f"Error: Rate limit exceeded for task {task_id}. Try again later."
return f"Error downloading file for task {task_id}: {str(e)}"
except requests.exceptions.RequestException as e:
return f"Error downloading file for task {task_id}: {str(e)}"
class SpeechToTextTool(Tool):
name = "speech_to_text"
description = (
"Converts an audio file to text using OpenAI Whisper."
)
inputs = {
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
}
output_type = "string"
def __init__(self):
super().__init__()
self.model = whisper.load_model("base")
def forward(self, audio_path: str) -> str:
if not os.path.exists(audio_path):
return f"Error: File not found at {audio_path}"
result = self.model.transcribe(audio_path)
return result.get("text", "")
class ExcelReaderTool(Tool):
name = "excel_reader"
description = """
This tool reads and processes Excel files (.xlsx, .xls).
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
"""
inputs = {
"excel_path": {
"type": "string"
,
"description": "The path to the Excel file to read",
},
"sheet_name": {
"type": "string",
"description": "The name of the sheet to read (optional, defaults to first sheet)",
"nullable": True
}
}
output_type = "string"
def forward(self, excel_path: str, sheet_name: str = None) -> str:
"""
Reads and processes the given Excel file.
"""
try:
# Check if the file exists
if not os.path.exists(excel_path):
return f"Error: Excel file not found at {excel_path}"
import pandas as pd
# Read the Excel file
if sheet_name:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
else:
df = pd.read_excel(excel_path)
# Get basic info about the data
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"head": df.head(5).to_dict()
}
# Return formatted info
result = f"Excel file: {excel_path}\n"
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
result += "Columns:\n"
for col in info['columns']:
result += f"- {col} ({info['dtypes'].get(col)})\n"
result += "\nPreview (first 5 rows):\n"
result += df.head(5).to_string()
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
@tool
def PNG2FENTool(png_file: str) -> str:
"""Tool for converting a PNG file containing a chess board to a FEN position string.
Args:
png_file (str): The path to the PNG file.
Returns:
str: The FEN position string representing the chess board.
"""
# Raises:
# - FileNotFoundError:
# If the PNG file does not exist.
# - ValueError:
# If the PNG file cannot be processed or does not contain a valid chess board.
try:
# Open and preprocess image with modern Pillow
img = Image.open(png_file)
img = ImageOps.exif_transpose(img).convert("L")
# Use LANCZOS instead of ANTIALIAS
img = img.resize((img.width*2, img.height*2), Image.Resampling.LANCZOS)
# Save temp file for OCR
temp_path = "chess_temp.png"
img.save(temp_path)
# Perform OCR
import easyocr
reader = easyocr.Reader(['en'])
result = reader.readtext(png_file, detail=0)
fen_candidates = [text for text in result if validate_fen_format(text)]
if not fen_candidates:
raise ValueError("No valid FEN found in image")
return fen_candidates[0]
except Exception as e:
raise ValueError(f"OCR processing failed: {str(e)}")
# try:
# # Open the PNG file using PIL
# image = Image.open(png_file)
#
# # Use pytesseract to extract text from the image
# text = pytesseract.image_to_string(image)
#
# # Process the extracted text to get the FEN position string
# fen_position = process_text_to_fen(text)
#
# return fen_position
#
except FileNotFoundError:
raise FileNotFoundError("PNG file not found.")
#
# except Exception as e:
# raise ValueError("Error processing PNG file: " + str(e))
def process_text_to_fen(text):
"""
Processes the extracted text from the image to obtain the FEN position string.
Parameters:
- text: str
The extracted text from the image.
Returns:
- str:
The FEN position string representing the chess board.
Raises:
- ValueError:
If the extracted text does not contain a valid chess board.
"""
# Process the text to remove any unnecessary characters or spaces
processed_text = text.strip().replace("\n", "").replace(" ", "")
# Check if the processed text matches the expected format of a FEN position string
if not validate_fen_format(processed_text):
raise ValueError("Invalid chess board.")
return processed_text
def validate_fen_format(fen_string):
"""
Validates if a given string matches the format of a FEN (Forsyth–Edwards Notation) position string.
Parameters:
- fen_string: str
The string to be validated.
Returns:
- bool:
True if the string matches the FEN format, False otherwise.
"""
# FEN format: 8 sections separated by '/'
sections = fen_string.split("/")
if len(sections) != 8:
return False
# Check if each section contains valid characters
for section in sections:
if not validate_section(section):
return False
return True
def validate_section(section):
"""
Validates if a given section of a FEN (Forsyth–Edwards Notation) position string contains valid characters.
Parameters:
- section: str
The section to be validated.
Returns:
- bool:
True if the section contains valid characters, False otherwise.
"""
# Valid characters: digits 1-8 or letters 'r', 'n', 'b', 'q', 'k', 'p', 'R', 'N', 'B', 'Q', 'K', 'P'
valid_chars = set("12345678rnbqkpRNBQKP")
return all(char in valid_chars for char in section)
import chess
import chess.engine
class ChessEngineTool(Tool):
name = "chess_engine"
description = "Analyzes a chess position (FEN) with Stockfish and returns the best move."
inputs = {
"fen": {"type": "string", "description": "FEN string of the position."},
"time_limit": {"type": "number", "description": "Time in seconds for engine analysis.", "nullable": True}
}
output_type = "string"
def forward(self, fen: str, time_limit: float = 0.1) -> str:
# figure out where the binary actually is
sf_bin = shutil.which("stockfish") or "/usr/games/stockfish"
if not sf_bin:
raise RuntimeError(
f"Cannot find stockfish on PATH or at /usr/games/stockfish. "
"Did you install it in apt.txt or via apt-get?"
)
board = chess.Board(fen)
engine = chess.engine.SimpleEngine.popen_uci(sf_bin)
result = engine.play(board, chess.engine.Limit(time=time_limit))
engine.quit()
return board.san(result.move)
class PythonCodeReaderTool(Tool):
name = "read_python_code"
description = "Reads a Python (.py) file and returns its content as a string."
inputs = {
"file_path": {"type": "string", "description": "The path to the Python file to read"}
}
output_type = "string"
def forward(self, file_path: str) -> str:
try:
if not os.path.exists(file_path):
return f"Error: Python file not found at {file_path}"
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except Exception as e:
return f"Error reading Python file: {str(e)}"
class MagAgent:
def __init__(self, rate_limiter: Optional[Limiter] = None):
"""Initialize the MagAgent with search tools."""
self.rate_limiter = rate_limiter
print("Initializing MagAgent with search tools...")
# model = LiteLLMModel(
# model_id="gemini/gemini-2.0-flash-preview-image-generation",
# api_key= os.environ.get("GEMINI_KEY"),
# max_tokens=8192
# )
model = LiteLLMModel(
model_id="gemini/gemini-1.5-flash", # Use standard multimodal model
api_key=os.environ.get("GEMINI_KEY"),
max_tokens=8192,
api_base="https://generativelanguage.googleapis.com/v1beta" # Correct endpoint
)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Initialize rate limiter for DuckDuckGoSearchTool
search_rate_limiter = Limiter(rate=30/60, capacity=30, storage=MemoryStorage()) if not rate_limiter else rate_limiter
self.agent = CodeAgent(
model= model,
tools=[
DownloadTaskAttachmentTool(rate_limiter=rate_limiter),
# DuckDuckGoSearchTool(),
# WikipediaSearchTool(),
SpeechToTextTool(),
ExcelReaderTool(),
VisitWebpageTool(),
PythonCodeReaderTool(),
PNG2FENTool,
ChessEngineTool(),
# GoogleSearchTool,
# ImageAnalysisTool,
],
verbosity_level=2,
prompt_templates=prompt_templates,
add_base_tools=True,
max_steps=15
)
print("MagAgent initialized.")
async def __call__(self, question: str, task_id: str) -> str:
"""Process a question asynchronously using the MagAgent."""
print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for task {task_id}. Waiting...")
await asyncio.sleep(60 / 15) # Assuming 15 RPM
# Include task_id in the task prompt to guide the agent
task = (
# f"Answer the following question accurately and concisely: \n"
f"{question} \n"
f"If the question references an attachment, use tool to download it with task_id: {task_id}\n"
# f"Return the answer as a string."
)
print(f"Calling agent.run for task {task_id}...")
response = await asyncio.to_thread(
self.agent.run,
task=task
)
print(f"Agent.run completed for task {task_id}.")
response = str(response)
if not response:
print(f"No answer found for task {task_id}.")
response = "No answer found."
print(f"MagAgent response: {response[:50]}...")
return response
except Exception as e:
error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
print(error_msg)
return error_msg |