File size: 3,680 Bytes
c10da7d
9e0ec52
716a5c8
8e7d1a1
9e0ec52
c10da7d
4433b73
21e9b57
0208310
 
 
 
 
 
 
 
c10da7d
 
 
 
 
 
 
 
4433b73
0b689e4
355baca
 
 
 
 
 
 
c10da7d
 
 
 
4433b73
0b689e4
355baca
 
 
 
 
 
 
 
c10da7d
 
 
 
9e0ec52
 
3cf8730
 
d1568ce
bc906fa
716a5c8
d1568ce
89d512b
ea6e8d7
8e7d1a1
 
 
 
9e0ec52
ea6e8d7
9e0ec52
c10da7d
8e7d1a1
c10da7d
 
9e0ec52
 
89d512b
9e0ec52
 
3cf8730
 
9e0ec52
8e7d1a1
 
 
 
9e0ec52
 
8e7d1a1
9e0ec52
c10da7d
 
 
 
8e7d1a1
 
 
3cf8730
9e0ec52
 
8e7d1a1
9e0ec52
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from smolagents import CodeAgent,  WikipediaSearchTool, LiteLLMModel, tool, load_tool # HfApiModel, OpenAIServerModel
import asyncio
import os
import yaml

# Simulated additional tools (implementation depends on external APIs or setup)
@tool
def GoogleSearchTool(query: str) -> str:
    """Tool for performing Google searches using Custom Search JSON API
        
    Args:
        query (str): Search query string to look up
    
    Returns:
        str: Formatted search results (simulated or real)
    """
    def __init__(self):
        self.api_key = os.environ.get("GOOGLE_API_KEY")
        self.cse_id = os.environ.get("GOOGLE_CSE_ID")
        if not self.api_key or not self.cse_id:
            raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")

        return f"Google search results for '{query}' (simulated)."

@tool
def ImageAnalysisTool(image_path: str) -> str:
    """Tool for analyzing images using computer vision
        
    Args:
        image_path: Path to image file
    Returns:
        Simulated image analysis results
    """
    def analyze(self, image_path: str) -> str:
        # Placeholder: Use Google Vision API or similar in real implementation
        return f"Analyzed image at '{image_path}' (simulated description)."

@tool
def LocalFileAudioTool(file_path: str) -> str:
    """Tool for transcribing audio files

    Args:
        file_path: Path to audio file
    Returns:
        Simulated transcription text
    """    

    def transcribe(self, file_path: str) -> str:
        # Placeholder: Use speech recognition library like SpeechRecognition in real setup
        return f"Transcribed audio from '{file_path}' (simulated transcription)."

class MagAgent:
    def __init__(self):
        """Initialize the MagAgent with search tools."""
        print("Initializing MagAgent with search tools...")
        model = LiteLLMModel(
            model_id="gemini/gemini-2.0-flash-lite",
            api_key= os.environ.get("GEMINI_KEY"),
            max_tokens=8192
        )

        # Load prompt templates
        with open("prompts.yaml", 'r') as stream:
            prompt_templates = yaml.safe_load(stream)
        
        self.agent = CodeAgent(
            model= model,
            tools=[
                GoogleSearchTool(),
                WikipediaSearchTool(),
                ImageAnalysisTool(),
                LocalFileAudioTool()
            ]
        )
        print("MagAgent initialized.")

    async def __call__(self, question: str) -> str:
        """Process a question asynchronously using the MagAgent."""
        print(f"MagAgent received question (first 50 chars): {question[:50]}...")
        try:
            # Define a task with fallback search logic
            task = (
                f"Answer the following question accurately and concisely: {question}\n"
            )
            response = await asyncio.to_thread(
                self.agent.run,
                task=task
            )

            # Ensure response is a string, fixing the integer error
            response = str(response) if response is not None else "No answer found."
       
            if not response or "No Wikipedia page found" in response:
                # Fallback response if search fails
                response = "Unable to retrieve exact data. Please refine the question or check external sources."
            print(f"MagAgent response: {response[:50]}...")
            return response
        except Exception as e:
            error_msg = f"Error processing question: {str(e)}. Check API key or network connectivity."
            print(error_msg)
            return error_msg