Spaces:
Running
Running
File size: 11,140 Bytes
b8b90a1 9e0ec52 716a5c8 5b72b9c 1cb9abe c59b7ce 8e7d1a1 8e0562f ab5793d 9bf5030 9e0ec52 c10da7d cb6c54f 8f70d65 cb6c54f 007432f e0ec178 4ec0db1 e0ec178 144372f e0ec178 8e0562f ab5793d 2ce2965 ab5793d 1a73bd2 ab5793d 1a73bd2 ab5793d 9bf5030 c0c99f4 9bf5030 b2ae908 9bf5030 1cb9abe ab5793d 1cb9abe c10da7d 4b67ab1 c10da7d 9e0ec52 ed267db 3cf8730 ed267db 3cf8730 d1568ce 8f70d65 716a5c8 d1568ce 89d512b ea6e8d7 8e7d1a1 9e0ec52 ea6e8d7 9e0ec52 cb6c54f ab5793d 923b0ed e0ec178 61c27d6 4b67ab1 144372f 1cb9abe 9e0ec52 89d512b 9e0ec52 4ec0db1 3cf8730 a966bbf ed267db 9e0ec52 ed267db 8e7d1a1 4ec0db1 8e7d1a1 9e0ec52 8e7d1a1 9e0ec52 c10da7d 3925d2a c10da7d 3cf8730 9e0ec52 3925d2a 9e0ec52 8e7d1a1 9e0ec52 3925d2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter
import yaml
from PIL import Image
import requests
from io import BytesIO
from markdownify import markdownify
import whisper
# Simulated additional tools (implementation depends on external APIs or setup)
#@tool
#def GoogleSearchTool(query: str) -> str:
# """Tool for performing Google searches using Custom Search JSON API
# Args:
# query (str): Search query string
# Returns:
# str: Formatted search results
# """
# cse_id = os.environ.get("GOOGLE_CSE_ID")
# if not api_key or not cse_id:
# raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
# url = "https://www.googleapis.com/customsearch/v1"
# params = {
# "key": api_key,
# "cx": cse_id,
# "q": query,
# "num": 5 # Number of results to return
# }
# try:
# response = requests.get(url, params=params)
# response.raise_for_status()
# results = response.json().get("items", [])
# return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
# except Exception as e:
# return f"Error performing Google search: {str(e)}"
#@tool
#def ImageAnalysisTool(question: str, model: LiteLLMModel) -> str:
# """Tool for analyzing images mentioned in the question.
# Args:
# question (str): The question text which may contain an image URL.
# Returns:
# str: Image description or error message.
# """
# # Extract URL from question using regex
# url_pattern = r'https?://\S+'
# match = re.search(url_pattern, question)
# if not match:
# return "No image URL found in the question."
# image_url = match.group(0)
#
# headers = {
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
# }
# try:
# response = requests.get(image_url, headers=headers)
# response.raise_for_status()
# image = Image.open(BytesIO(response.content)).convert("RGB")
# except Exception as e:
# return f"Error fetching image: {e}"
#
# agent = CodeAgent(
# tools=[],
# model=model,
# max_steps=10,
# verbosity_level=2
# )
#
# response = agent.run(
# "Describe in details the chess position you see in the image.",
# images=[image]
# )
#
# return f"The image description: '{response}'"
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
output_type = "string"
def forward(self, url: str) -> str:
try:
import requests
from markdownify import markdownify
from requests.exceptions import RequestException
from smolagents.utils import truncate_content
except ImportError as e:
raise ImportError(
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
) from e
try:
# Send a GET request to the URL with a 20-second timeout
response = requests.get(url, timeout=20)
response.raise_for_status() # Raise an exception for bad status codes
# Convert the HTML content to Markdown
markdown_content = markdownify(response.text).strip()
# Remove multiple line breaks
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False
class DownloadTaskAttachmentTool(Tool):
name = "download_file"
description = "Downloads the file attached to the task ID"
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
output_type = "string"
def forward(self, task_id: str) -> str:
"""
Downloads a file associated with the given task ID.
Returns the file path where the file is saved locally.
"""
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
local_file_path = f"downloads/{task_id}.file"
print(f"Downloading file for task ID {task_id} from {file_url}...")
try:
file_url = f"{DEFAULT_API_URL}/files/{task_id}"
local_path = f"downloads/{task_id}.xlsx"
response = requests.get(file_url, stream=True, timeout=15)
response.raise_for_status()
os.makedirs("downloads", exist_ok=True)
with open(local_file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded successfully: {local_file_path}")
return local_file_path
except requests.exceptions.RequestException as e:
print(f"Error downloading file for task {task_id}: {e}")
raise
def __init__(self, *args, **kwargs):
self.is_initialized = False
@tool
def SpeechToTextTool(audio_path: str) -> str:
"""Tool for converting an audio file to text using OpenAI Whisper.
Args:
audio_path (str): Path to audio file
Returns:
str: audio speech text
"""
model = whisper.load_model("base")
if not os.path.exists(audio_path):
return f"Error: File not found at {audio_path}"
result = model.transcribe(audio_path)
return result.get("text", "")
class ExcelReaderTool(Tool):
name = "excel_reader"
description = """
This tool reads and processes Excel files (.xlsx, .xls).
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
"""
inputs = {
"excel_path": {
"type": "string",
"description": "The path to the Excel file to read",
},
"sheet_name": {
"type": "string",
"description": "The name of the sheet to read (optional, defaults to first sheet)",
"nullable": True
}
}
output_type = "string"
def forward(self, excel_path: str, sheet_name: str = None) -> str:
"""
Reads and processes the given Excel file.
"""
try:
# Check if the file exists
if not os.path.exists(excel_path):
return f"Error: Excel file not found at {excel_path}"
import pandas as pd
# Read the Excel file
if sheet_name:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
else:
df = pd.read_excel(excel_path)
# Get basic info about the data
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"head": df.head(5).to_dict()
}
# Return formatted info
result = f"Excel file: {excel_path}\n"
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
result += "Columns:\n"
for col in info['columns']:
result += f"- {col} ({info['dtypes'].get(col)})\n"
result += "\nPreview (first 5 rows):\n"
result += df.head(5).to_string()
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
#@tool
#class LocalFileAudioTool:
# """Tool for transcribing audio files"""
#
# @tool
# def transcribe(self, file_path: str) -> str:
# """Transcribe audio from file
# Args:
# file_path (str): Path to audio file
# Returns:
# str: Transcription text
# """
# return f"Transcribed audio from '{file_path}' (simulated)."
class MagAgent:
def __init__(self, rate_limiter: Optional[Limiter] = None):
"""Initialize the MagAgent with search tools."""
self.rate_limiter = rate_limiter
print("Initializing MagAgent with search tools...")
model = LiteLLMModel(
model_id="gemini/gemini-2.0-flash",
api_key= os.environ.get("GEMINI_KEY"),
max_tokens=8192
)
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
self.agent = CodeAgent(
model= model,
tools=[
# GoogleSearchTool,
DownloadTaskAttachmentTool(),
DuckDuckGoSearchTool(),
WikipediaSearchTool(),
# ImageAnalysisTool,
SpeechToTextTool,
ExcelReaderTool()
# LocalFileAudioTool()
],
verbosity_level=2,
add_base_tools=True,
max_steps=20
)
print("MagAgent initialized.")
async def __call__(self, question: str, tast_id) -> str:
"""Process a question asynchronously using the MagAgent."""
print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
await asyncio.sleep(60 / RATE_LIMIT)
# Define a task with fallback search logic
task = (
f"Answer the following question accurately and concisely: {question}\n"
f"If the question references an attachment, use the download_file tool with task_id: {task_id}\n"
f"Return the answer as a string."
)
response = await asyncio.to_thread(
self.agent.run,
task=task
)
# Ensure response is a string, fixing the integer error
response = str(response)
if response is None:
print(f"No answer found.")
print(f"MagAgent response: {response[:50]}...")
return response
except Exception as e:
error_msg = f"Error processing question: {str(e)}. Check API key or network connectivity."
print(error_msg)
return error_msg
|