Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,10 @@ from langchain_core.documents import Document # Updated import
|
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings # Updated import
|
6 |
from langchain.evaluation import load_evaluator
|
7 |
from langchain_community.vectorstores import Chroma
|
|
|
|
|
8 |
from dotenv import load_dotenv
|
|
|
9 |
import os
|
10 |
import shutil # Added import
|
11 |
import numpy as np
|
@@ -17,6 +20,15 @@ load_dotenv()
|
|
17 |
|
18 |
CHROMA_PATH = "chroma"
|
19 |
DATA_PATH = "" # Update this to your actual data path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def main():
|
22 |
# Создаем папки при необходимости
|
@@ -25,43 +37,48 @@ def main():
|
|
25 |
|
26 |
generate_data_store()
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
31 |
-
cache_folder="model_cache"
|
32 |
-
model_kwargs={'device': 'cpu'}, # Форсируем использование CPU
|
33 |
-
encode_kwargs={'normalize_embeddings': True}
|
34 |
)
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Тест для "управитель"
|
41 |
-
vector = embeddings.embed_query("управитель")
|
42 |
-
print(f"Вектор для 'управитель' (первые 5 значений): {vector[:5]}")
|
43 |
-
print(f"Длина вектора: {len(vector)}")
|
44 |
-
|
45 |
-
# Инициализация эвалуатора
|
46 |
-
evaluator = load_evaluator(
|
47 |
-
"pairwise_embedding_distance",
|
48 |
-
embeddings=embeddings
|
49 |
)
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
("
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def generate_data_store():
|
67 |
documents = load_documents()
|
|
|
5 |
from langchain_huggingface import HuggingFaceEmbeddings # Updated import
|
6 |
from langchain.evaluation import load_evaluator
|
7 |
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain_community.llms import HuggingFaceHub
|
9 |
+
from langchain.prompts import ChatPromptTemplate
|
10 |
from dotenv import load_dotenv
|
11 |
+
import argparse
|
12 |
import os
|
13 |
import shutil # Added import
|
14 |
import numpy as np
|
|
|
20 |
|
21 |
CHROMA_PATH = "chroma"
|
22 |
DATA_PATH = "" # Update this to your actual data path
|
23 |
+
PROMPT_TEMPLATE = """
|
24 |
+
Ответь на вопрос, используя только следующий контекст:
|
25 |
+
|
26 |
+
{context}
|
27 |
+
|
28 |
+
---
|
29 |
+
|
30 |
+
Ответь на вопрос на основе приведенного контекста: {question}
|
31 |
+
"""
|
32 |
|
33 |
def main():
|
34 |
# Создаем папки при необходимости
|
|
|
37 |
|
38 |
generate_data_store()
|
39 |
|
40 |
+
help="Что означает Солнце на третьей ступени лестницы?"
|
41 |
+
process_query(help)
|
42 |
+
|
43 |
+
def process_query(query_text: str):
|
44 |
+
# Инициализация эмбеддингов
|
45 |
+
embeddings = HuggingFaceEmbeddings(
|
46 |
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
47 |
+
cache_folder="model_cache"
|
|
|
|
|
48 |
)
|
49 |
+
|
50 |
+
# Загрузка векторной БД
|
51 |
+
db = Chroma(
|
52 |
+
persist_directory=CHROMA_PATH,
|
53 |
+
embedding_function=embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
55 |
|
56 |
+
# Поиск по схожести
|
57 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=3)
|
58 |
+
if not results or results[0][1] < 0.7:
|
59 |
+
print("Не найдено подходящих результатов.")
|
60 |
+
return
|
61 |
|
62 |
+
# Формирование контекста
|
63 |
+
context_text = "\n\n---\n\n".join([doc.page_content for doc, _ in results])
|
64 |
+
|
65 |
+
# Создание промпта
|
66 |
+
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
|
67 |
+
prompt = prompt_template.format(context=context_text, question=query_text)
|
68 |
+
|
69 |
+
# Инициализация модели для генерации
|
70 |
+
model = HuggingFaceHub(
|
71 |
+
repo_id="google/flan-t5-small",
|
72 |
+
model_kwargs={"temperature": 0.5, "max_length": 512}
|
73 |
+
)
|
74 |
+
|
75 |
+
# Генерация ответа
|
76 |
+
response_text = model.predict(prompt)
|
77 |
+
|
78 |
+
# Форматирование вывода
|
79 |
+
sources = [doc.metadata.get("source", None) for doc, _ in results]
|
80 |
+
print(f"Ответ: {response_text}")
|
81 |
+
print(f"Источники: {sources}")
|
82 |
|
83 |
def generate_data_store():
|
84 |
documents = load_documents()
|