Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,36 @@
|
|
1 |
-
|
2 |
-
from langchain_community.document_loaders import DirectoryLoader
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
from langchain.schema import Document
|
5 |
-
# from langchain.embeddings import OpenAIEmbeddings
|
6 |
from langchain_openai import OpenAIEmbeddings
|
7 |
from langchain_community.vectorstores import Chroma
|
8 |
-
import openai
|
9 |
-
|
10 |
from dotenv import load_dotenv
|
11 |
import os
|
12 |
-
import shutil
|
13 |
|
14 |
-
# Load environment variables
|
15 |
load_dotenv()
|
16 |
-
|
17 |
-
# Change environment variable name from "OPENAI_API_KEY" to the name given in
|
18 |
-
# your .env file.
|
19 |
-
openai.api_key = os.environ['OPENAI_API_KEY']
|
20 |
|
21 |
CHROMA_PATH = "chroma"
|
22 |
-
DATA_PATH = ""
|
23 |
|
24 |
-
|
25 |
-
def
|
26 |
-
main():
|
27 |
generate_data_store()
|
28 |
|
29 |
-
|
30 |
def generate_data_store():
|
31 |
documents = load_documents()
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
def load_documents():
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
documents = loader.load()
|
39 |
return documents
|
40 |
|
41 |
-
|
42 |
def split_text(documents: list[Document]):
|
43 |
text_splitter = RecursiveCharacterTextSplitter(
|
44 |
chunk_size=300,
|
|
|
1 |
+
from langchain_community.document_loaders import UnstructuredMarkdownLoader
|
|
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
from langchain.schema import Document
|
|
|
4 |
from langchain_openai import OpenAIEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
|
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
import os
|
|
|
8 |
|
9 |
+
# Load environment variables
|
10 |
load_dotenv()
|
11 |
+
# Assumes OPENAI_API_KEY is set in .env
|
|
|
|
|
|
|
12 |
|
13 |
CHROMA_PATH = "chroma"
|
14 |
+
DATA_PATH = "" # Update this to your actual data path
|
15 |
|
16 |
+
def main():
|
|
|
|
|
17 |
generate_data_store()
|
18 |
|
|
|
19 |
def generate_data_store():
|
20 |
documents = load_documents()
|
21 |
+
if documents:
|
22 |
+
chunks = split_text(documents)
|
23 |
+
save_to_chroma(chunks)
|
24 |
|
25 |
def load_documents():
|
26 |
+
file_path = os.path.join(DATA_PATH, "pl25032025.md")
|
27 |
+
if not os.path.exists(file_path):
|
28 |
+
print(f"Error: File {file_path} not found.")
|
29 |
+
return []
|
30 |
+
loader = UnstructuredMarkdownLoader(file_path)
|
31 |
documents = loader.load()
|
32 |
return documents
|
33 |
|
|
|
34 |
def split_text(documents: list[Document]):
|
35 |
text_splitter = RecursiveCharacterTextSplitter(
|
36 |
chunk_size=300,
|