Spaces:
Sleeping
Sleeping
File size: 12,756 Bytes
6823d2e 39f7267 6823d2e 39f7267 6823d2e 39f7267 6823d2e 39f7267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
we need to add langchain control to HF AI agent code provided below. State should have location_provided boolean, plant str, root_crop boolean and location_cautions str, answer str To the existing workflow we need to add next steps: 1. check if plant name is provided and recodnized (for root crop or above ground) update plant, root_crop 2. identify if location is provided in the request, and if so, set location_provided true, identify if location is not on Earth, and if so, update location_cautions with "Salute you explorer!" + explain why moon indices don't work outside of Earth, and suggest principles analogous indices could be developed on other planets. final_answer = location_cautions otherwise, check if location is not fertile or sutable for planting outdoor and if so, update location_cautions so user should ensure required conditions for the plant (e.g. indoor) before relying on the fertility indices. otherwise, proceed with request to #2 otherwise, proceed with request to #2 3. check if request about planting or pruning? and for planting check if plant not defined, and if so, clarify from user plant and if not recognized clarify if it is crop root update plant variable, find out corresponding fertility index to answer for pruning find out pruning index 4. if location_caution <> 0 then answer = answer + location_caution AI agent code: from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool import smolagents # Added for aliasing # from smolagents.security import E2BSandbox import datetime import pytz import yaml from skyfield.api import load, Topos, load_file from skyfield import almanac from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI import os import base64 # Add the alias before instrumentation smolagents.ApiModel = smolagents.HfApiModel LANGFUSE_PUBLIC_KEY="pk-lf-133099c7-8644-49e8-8f6e-ec8bd6d543fd" LF_SECRET_KEY = os.environ["LANGFUSE_SECRET_KEY"] LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LF_SECRET_KEY}".encode()).decode() os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region # os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://us.cloud.langfuse.com/api/public/otel" # US data region os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}" from opentelemetry.sdk.trace import TracerProvider from openinference.instrumentation.smolagents import SmolagentsInstrumentor from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.sdk.trace.export import SimpleSpanProcessor trace_provider = TracerProvider() trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter())) SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) # Load ephemeris and timescale planets = load('https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de440.bsp') ts = load.timescale() # Define Zodiac signs and their boundaries (0° to 360° ecliptic longitude) ZODIAC_SIGNS = [ ("Aries", 0, 30), ("Taurus", 30, 60), ("Gemini", 60, 90), ("Cancer", 90, 120), ("Leo", 120, 150), ("Virgo", 150, 180), ("Libra", 180, 210), ("Scorpio", 210, 240), ("Sagittarius", 240, 270), ("Capricorn", 270, 300), ("Aquarius", 300, 330), ("Pisces", 330, 360), ] # Moon phase boundaries (0° to 360° phase angle) for display purposes MOON_PHASES = [ ("New Moon", 0, 45), ("Waxing Crescent", 45, 90), ("First Quarter", 90, 135), ("Waxing Gibbous", 135, 180), ("Full Moon", 180, 225), ("Waning Gibbous", 225, 270), ("Last Quarter", 270, 315), ("Waning Crescent", 315, 360), ] # Fertility sign coefficients (applicable to all plants) FERTILITY_SIGN_COEFFS = { "Aries": 1, "Taurus": 2, "Gemini": 0, "Cancer": 2, "Leo": 1, "Virgo": 0, "Libra": 0.5, "Scorpio": 1.5, "Sagittarius": 1, "Capricorn": 1, "Aquarius": 0, "Pisces": 2, } # Pruning sign coefficients (applicable to all plants) PRUNING_SIGN_COEFFS = { "Aries": 1, "Taurus": 0, "Gemini": 2, "Cancer": 0, "Leo": 1, "Virgo": 2, "Libra": 1.5, "Scorpio": 0.5, "Sagittarius": 1, "Capricorn": 1, "Aquarius": 2, "Pisces": 0, } # Fertility phase coefficients for above-ground plants FERTILITY_PHASE_COEFFS_ABOVE = { "New Moon": 0, "Waxing Moon": 1, "Full Moon": 0, "Waning Moon": 0.5, } # Fertility phase coefficients for root crops FERTILITY_PHASE_COEFFS_ROOT = { "New Moon": 0, "Waxing Moon": 0.5, "Full Moon": 0, "Waning Moon": 1, } # Pruning phase coefficients PRUNING_PHASE_COEFFS = { "New Moon": 0, "Waxing Moon": 1, "Full Moon": 0, "Waning Moon": 0.5, } @tool def get_moon_info(date_time: str) -> dict: """ Returns Moon's Zodiac position, phase, and fertility and pruning indices for the given date/time. The fertility and pruning indices are calculated as sum of sign and phase fertility values of the Moon position. Moon sign fertility amounts up to 2.0 value and phase fertility value could be 1.0 max. It is observed that when Moon is in different Zodiac signs, the fertility of new plants and impact of pruning differs. When Moon is in fertile sign the plant is in the active phase, when all processes are particularly intense, and any intervention such as pruning can be very traumatic for the plant. Here: Most fertile signs: Taurus, Pisces, Cancer - Plants are in the active growth phase, juices and nutrients actively circulate in the plant, and it is best time for fertilizers, harvasting cutting, vaccination, rooting. Conditionally fertile: Scorpio Neutral: Aries, Leo, Sagittarius, Capricorn Conditionally sterile: Libra Sterile: Gemini, Virgo, Aquarius Fertility indices ranges from 0.0 to 3.0 where proportionaly 0 - minimal expected fertility 3.0 - most favorable fertility for platining, and depends on type of plant (root crop or produce above ground). Pruning indices ranges from 0 to 3 where proportionaly: 0 - pruning is not recommended as it causes most damage to tree and can lead to: Increased sap production from the cut points Increased vulnerability to infections Delayed wound healing Possible weakening of the plant. Instead of pruning into fertile signs, you can do: Crown formation Pinching the shoots Removing dead branches Sanitary treatment 1.0 - pruning is not recommended, 2.0 - allowed only minimum or sanitary pruning, 3.0 - most favorable time for pruning. Args: date_time (str): ISO 8601 formatted datetime (YYYY-MM-DDTHH:MM:SS) Returns: dict: { "zodiac_position": "Leo 15°30'", "moon_phase": "Waxing Gibbous", "fertility_above_ground": 2.0, "fertility_root_crop": 1.5, "pruning": 2.0 } """ try: # Parse input datetime and localize to UTC user_time = datetime.datetime.strptime(date_time, "%Y-%m-%dT%H:%M:%S") user_time = pytz.utc.localize(user_time) # Use loaded ephemeris and timescale t = ts.from_datetime(user_time) # Define celestial bodies earth = planets['earth'] moon = planets['moon'] sun = planets['sun'] # Calculate Moon's ecliptic longitude astrometric = earth.at(t).observe(moon) ecliptic_lat, ecliptic_lon, distance = astrometric.ecliptic_latlon() lon_deg = ecliptic_lon.degrees % 360 # Calculate the phase angle using almanac.moon_phase phase = almanac.moon_phase(planets, t) phase_angle = phase.degrees # Determine Zodiac sign and position zodiac_sign = "Unknown" position_degrees = 0 for sign, start, end in ZODIAC_SIGNS: if start <= lon_deg < end: zodiac_sign = sign position_degrees = lon_deg - start break # Format position to degrees and minutes degrees = int(position_degrees) minutes = int((position_degrees % 1) * 60) position_str = f"{zodiac_sign} {degrees}°{minutes:02}'" # Determine moon phase for display moon_phase = "Unknown" for phase, start, end in MOON_PHASES: if start <= phase_angle < end: moon_phase = phase break # Determine phase category for indices with 15° orbis for New and Full Moon if (phase_angle >= 345 or phase_angle < 15): phase_category = "New Moon" # 345° to 15° (30° total orbis) elif 15 <= phase_angle < 165: phase_category = "Waxing Moon" elif 165 <= phase_angle < 195: phase_category = "Full Moon" # 165° to 195° (30° total orbis) elif 195 <= phase_angle < 345: phase_category = "Waning Moon" else: phase_category = "Unknown" # Calculate fertility and pruning indices if zodiac_sign in FERTILITY_SIGN_COEFFS and phase_category in FERTILITY_PHASE_COEFFS_ABOVE: fertility_above_ground = FERTILITY_SIGN_COEFFS[zodiac_sign] + FERTILITY_PHASE_COEFFS_ABOVE[phase_category] fertility_root_crop = FERTILITY_SIGN_COEFFS[zodiac_sign] + FERTILITY_PHASE_COEFFS_ROOT[phase_category] pruning = PRUNING_SIGN_COEFFS[zodiac_sign] + PRUNING_PHASE_COEFFS[phase_category] else: fertility_above_ground = None fertility_root_crop = None pruning = None return { "zodiac_position": position_str, "moon_phase": moon_phase, "fertility_above_ground": fertility_above_ground, "fertility_root_crop": fertility_root_crop, "pruning": pruning } except Exception as e: raise ValueError(f"Error in get_moon_info: {str(e)}") @tool def get_current_time_in_timezone(timezone: str) -> str: """ Returns the current local time in the specified timezone with description. Args: timezone (str): A string representing a valid timezone (e.g., 'UTC') Returns: str: Formatted local time with timezone description """ try: tz = pytz.timezone(timezone) now = datetime.datetime.now(tz) return f"Local time in {timezone}: {now.strftime('%Y-%m-%d %H:%M:%S')}" except Exception as e: return f"Error: {str(e)}" @tool def get_current_time_raw(timezone: str) -> str: """ Returns current local time in specified timezone as ISO 8601 string. Args: timezone (str): A string representing a valid timezone (e.g., 'UTC') Returns: str: Datetime in ISO 8601 format (YYYY-MM-DDTHH:MM:SS) """ try: tz = pytz.timezone(timezone) now = datetime.datetime.now(tz) return now.strftime("%Y-%m-%dT%H:%M:%S") except Exception as e: return f"Error: {str(e)}" # Model configuration final_answer = FinalAnswerTool() model = HfApiModel( max_tokens=2096, temperature=0.5, model_id="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/", custom_role_conversions=None, ) # Load image tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) # Load prompt templates with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) # Initialize agent with all tools agent = CodeAgent( model=model, tools=[final_answer, get_moon_info, get_current_time_in_timezone, get_current_time_raw, image_generation_tool], max_steps=6, verbosity_level=1, prompt_templates=prompt_templates # execution_env=E2BSandbox( # allowed_imports=["numpy", "pandas"], # Explicitly permitted packages # blocked_imports=["subprocess"], # Prevent system access # ), # safe_mode=True, # Enable safe code execution # timeout=10, # Seconds before execution timeout # max_memory=512, # MB memory limit # file_system_access=False, # Disable disk write access # network_access=False, # Block network operations # max_code_iterations=100, # Prevent infinite loops ) if __name__ == "__main__": GradioUI(agent).launch() # Change to your username and repo name # agent.push_to_hub('sergeyo7/Garden_Magus') |