File size: 12,090 Bytes
c26e9f8
f804acc
6fed08b
f804acc
adf2534
 
6fed08b
 
 
 
adf2534
6fed08b
 
cbbefe9
 
c8245a1
8e35c72
 
 
 
789eb52
8e35c72
 
 
 
 
789eb52
 
8e35c72
 
 
c34a50b
1f356e1
082b485
789eb52
082b485
 
 
 
 
 
 
 
c34a50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fed08b
 
5190d3e
082b485
 
c34a50b
bc12e9e
00a7c75
 
 
 
 
 
 
 
 
 
082b485
 
c34a50b
93a20bb
082b485
 
cbbefe9
082b485
8e35c72
c34a50b
082b485
afa5764
c8245a1
 
6fed08b
082b485
cbbefe9
123b8fc
8e35c72
0a92fe3
 
 
8e35c72
c8245a1
082b485
c8245a1
71e7fb5
c8245a1
 
 
082b485
8e35c72
c34a50b
c8245a1
 
 
 
c34a50b
082b485
 
c8245a1
082b485
 
 
c34a50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
082b485
c8245a1
c34a50b
 
 
 
082b485
 
 
cbbefe9
6ac4d9e
5190d3e
6ac4d9e
e0b6992
fb1f59e
6fed08b
fb1f59e
 
 
 
 
 
 
 
 
 
 
 
5190d3e
fb1f59e
 
 
6fed08b
e0b6992
fb1f59e
e0b6992
fb1f59e
e0b6992
6ac4d9e
 
fb1f59e
 
6ac4d9e
426bd32
6ac4d9e
6fed08b
f804acc
 
 
 
 
 
 
 
 
 
 
6fed08b
f804acc
 
 
123b8fc
 
 
 
 
 
f804acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fed08b
 
 
 
 
 
 
 
 
f804acc
123b8fc
6ac4d9e
 
5190d3e
f804acc
6ac4d9e
6fed08b
6ac4d9e
 
6fed08b
f804acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123b8fc
 
 
 
 
 
 
 
 
f804acc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fed08b
f804acc
 
 
 
 
 
 
 
6fed08b
c8245a1
6fed08b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
from smolagents import CodeAgent, HfApiModel, load_tool, tool
from langchain.memory import SimpleMemory
from tools.final_answer import FinalAnswerTool
from gradio import Interface
import os
import base64
import datetime
import pytz
from skyfield.api import load, Topos, load_file
from skyfield import almanac

# Load astronomical data (ephemeris) for moon calculations
planets = load('de421.bsp')
ts = load.timescale()

# Define Zodiac signs and their boundaries (0° to 360° ecliptic longitude)
ZODIAC_SIGNS = [
    ("Aries", 0, 30),
    ("Taurus", 30, 60),
    ("Gemini", 60, 90),
    ("Cancer", 90, 120),
    ("Leo", 120, 150),
    ("Virgo", 150, 180),
    ("Libra", 180, 210),
    ("Scorpio", 210, 240),
    ("Sagittarius", 240, 270),
    ("Capricorn", 270, 300),
    ("Aquarius", 300, 330),
    ("Pisces", 330, 360),
]

# Moon phase boundaries (0° to 360° phase angle) for display purposes
MOON_PHASES = [
    ("New Moon", 0, 45),
    ("Waxing Crescent", 45, 90),
    ("First Quarter", 90, 135),
    ("Waxing Gibbous", 135, 180),
    ("Full Moon", 180, 225),
    ("Waning Gibbous", 225, 270),
    ("Last Quarter", 270, 315),
    ("Waning Crescent", 315, 360),
]

# Fertility sign coefficients (applicable to all plants)
FERTILITY_SIGN_COEFFS = {
    "Aries": 1,
    "Taurus": 2,
    "Gemini": 0,
    "Cancer": 2,
    "Leo": 1,
    "Virgo": 0,
    "Libra": 0.5,
    "Scorpio": 1.5,
    "Sagittarius": 1,
    "Capricorn": 1,
    "Aquarius": 0,
    "Pisces": 2,
}

# Pruning sign coefficients (applicable to all plants)
PRUNING_SIGN_COEFFS = {
    "Aries": 1,
    "Taurus": 0,
    "Gemini": 2,
    "Cancer": 0,
    "Leo": 1,
    "Virgo": 2,
    "Libra": 1.5,
    "Scorpio": 0.5,
    "Sagittarius": 1,
    "Capricorn": 1,
    "Aquarius": 2,
    "Pisces": 0,
}

# Fertility phase coefficients for above-ground plants
FERTILITY_PHASE_COEFFS_ABOVE = {
    "New Moon": 0,
    "Waxing Moon": 1,
    "Full Moon": 0,
    "Waning Moon": 0.5,
}

# Fertility phase coefficients for root crops
FERTILITY_PHASE_COEFFS_ROOT = {
    "New Moon": 0,
    "Waxing Moon": 0.5,
    "Full Moon": 0,
    "Waning Moon": 1,
}

# Pruning phase coefficients
PRUNING_PHASE_COEFFS = {
    "New Moon": 0,
    "Waxing Moon": 1,
    "Full Moon": 0,
    "Waning Moon": 0.5,
}

# Tool definitions

@tool
def get_moon_info(date_time: str) -> dict:
    """
    Returns Moon's Zodiac position, phase, and fertility and pruning indices for the given date/time.
    
    Args:
        date_time (str): ISO 8601 formatted datetime (YYYY-MM-DDTHH:MM:SS)
    Returns:
        dict: {
            "zodiac_position": "Leo 15°30'",
            "moon_phase": "Waxing Gibbous",
            "fertility_above_ground": 2.0,
            "fertility_root_crop": 1.5,
            "pruning": 2.0
        }
    """
    try:
        # Parse input datetime and localize to UTC
        user_time = datetime.datetime.strptime(date_time, "%Y-%m-%dT%H:%M:%S")
        user_time = pytz.utc.localize(user_time)

        # Use loaded ephemeris and timescale
        t = ts.from_datetime(user_time)

        # Define celestial bodies
        earth = planets['earth']
        moon = planets['moon']
        sun = planets['sun']

        # Calculate Moon's ecliptic longitude
        astrometric = earth.at(t).observe(moon)
        ecliptic_lat, ecliptic_lon, distance = astrometric.ecliptic_latlon()
        lon_deg = ecliptic_lon.degrees % 360

        # Calculate the phase angle using almanac.moon_phase
        phase = almanac.moon_phase(planets, t)
        phase_angle = phase.degrees

        # Determine Zodiac sign and position
        zodiac_sign = "Unknown"
        position_degrees = 0
        for sign, start, end in ZODIAC_SIGNS:
            if start <= lon_deg < end:
                zodiac_sign = sign
                position_degrees = lon_deg - start
                break

        # Format position to degrees and minutes
        degrees = int(position_degrees)
        minutes = int((position_degrees % 1) * 60)
        position_str = f"{zodiac_sign} {degrees}°{minutes:02}'"

        # Determine moon phase for display
        moon_phase = "Unknown"
        for phase, start, end in MOON_PHASES:
            if start <= phase_angle < end:
                moon_phase = phase
                break

        # Determine phase category for indices with 15° orbis for New and Full Moon
        if (phase_angle >= 345 or phase_angle < 15):
            phase_category = "New Moon"  # 345° to 15° (30° total orbis)
        elif 15 <= phase_angle < 165:
            phase_category = "Waxing Moon"
        elif 165 <= phase_angle < 195:
            phase_category = "Full Moon"  # 165° to 195° (30° total orbis)
        elif 195 <= phase_angle < 345:
            phase_category = "Waning Moon"
        else:
            phase_category = "Unknown"

        # Calculate fertility and pruning indices
        if zodiac_sign in FERTILITY_SIGN_COEFFS and phase_category in FERTILITY_PHASE_COEFFS_ABOVE:
            fertility_above_ground = FERTILITY_SIGN_COEFFS[zodiac_sign] + FERTILITY_PHASE_COEFFS_ABOVE[phase_category]
            fertility_root_crop = FERTILITY_SIGN_COEFFS[zodiac_sign] + FERTILITY_PHASE_COEFFS_ROOT[phase_category]
            pruning = PRUNING_SIGN_COEFFS[zodiac_sign] + PRUNING_PHASE_COEFFS[phase_category]
        else:
            fertility_above_ground = None
            fertility_root_crop = None
            pruning = None

        return {
            "zodiac_position": position_str,
            "moon_phase": moon_phase,
            "fertility_above_ground": fertility_above_ground,
            "fertility_root_crop": fertility_root_crop,
            "pruning": pruning
        }

    except Exception as e:
        raise ValueError(f"Error in get_moon_info: {str(e)}")

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """
    Returns the current local time in the specified timezone with description.
    
    Args:
        timezone (str): A string representing a valid timezone (e.g., 'UTC')
    Returns:
        str: Formatted local time with timezone description
    """
    try:
        tz = pytz.timezone(timezone)
        now = datetime.datetime.now(tz)
        return f"Local time in {timezone}: {now.strftime('%Y-%m-%d %H:%M:%S')}"
    except Exception as e:
        return f"Error: {str(e)}"

@tool
def get_current_time_raw(timezone: str) -> str:
    """
    Returns current local time in specified timezone as ISO 8601 string.
    
    Args:
        timezone (str): A string representing a valid timezone (e.g., 'UTC')
    Returns:
        str: Datetime in ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
    """
    try:
        tz = pytz.timezone(timezone)
        now = datetime.datetime.now(tz)
        return now.strftime("%Y-%m-%dT%H:%M:%S")
    except Exception as e:
        return f"Error: {str(e)}"

# Memory initialization for state management
memory = SimpleMemory(
    memory={
        "location_provided": False,
        "plant": None,
        "root_crop": None,
        "location_cautions": "",
        "answer": "",
        "last_question": None
    }
)

# Prompt template for the agent
prompt_templates = {
    "main_prompt": """
      Current state:
      - location_provided: {memory[location_provided]}
      - plant: {memory[plant]}
      - root_crop: {memory[root_crop]}
      - location_cautions: {memory[location_cautions]}
      - answer: {memory[answer]}
      - last_question: {memory[last_question]}

      User's input: {input}

      Instructions:
      1. If responding to a clarification question (last_question is not None), interpret the input as the answer to that question and update the state accordingly.
      2. Otherwise, process the user's request as follows:
         - Check if a plant name is provided and recognized. If not, ask "Please specify the plant you are interested in." If recognized, determine if it’s a root crop or above-ground plant (e.g., known plants: potato=root, tomato=above-ground). If unrecognized, ask "Is this plant a root crop? (yes/no)".
         - Check if a location is provided. If yes, set location_provided to true. If the location is not on Earth (e.g., "Moon", "Mars"), set location_cautions to "Salute you explorer! Moon indices are Earth-specific due to gravitational and tidal influences. For other planets, develop indices based on local celestial cycles." and use it as the final answer. If on Earth, ask "Is this location suitable for outdoor planting? (yes/no)" to determine suitability.
         - Determine if the request is about planting or pruning. For planting, ensure plant is defined (ask if not), then calculate the fertility index using get_moon_info. For pruning, calculate the pruning index.
         - If location_cautions is not empty, append it to the answer.
      3. When asking a question, format your response as:
         "Action: Ask user\nQuestion: [your question]"
      4. When all information is gathered, calculate the answer and call FinalAnswerTool.
    """
}

# Initialize model and tools
final_answer = FinalAnswerTool()
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/",
    custom_role_conversions=None,
)
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

# Initialize the agent without the 'memory' parameter
agent = CodeAgent(
    model=model,
    tools=[final_answer, get_moon_info, get_current_time_in_timezone, get_current_time_raw],
    max_steps=10,
    verbosity_level=1,
    prompt_templates=prompt_templates,
)

# Conversation handler for multi-turn interactions
def conversation_handler(user_input, history):
    global memory, agent
    if memory["last_question"] is not None:
        if memory["last_question"] == "plant":
            memory["plant"] = user_input
            known_plants = {"potato": True, "tomato": False}
            if user_input in known_plants:
                memory["root_crop"] = known_plants[user_input]
            else:
                memory["last_question"] = "root_crop"
                return "Action: Ask user\nQuestion: Is this plant a root crop? (yes/no)"
        elif memory["last_question"] == "root_crop":
            memory["root_crop"] = user_input.lower() in ["yes", "y"]
            memory["last_question"] = None
        elif memory["last_question"] == "location_suitability":
            if user_input.lower() in ["no", "n"]:
                memory["location_cautions"] = "Ensure required conditions for the plant (e.g., indoor) before relying on the fertility indices."
            else:
                memory["location_cautions"] = ""
            memory["last_question"] = None

    # Update the prompt with current memory state
    current_prompt = prompt_templates["main_prompt"].format(
        memory=memory.memory,  # Pass the memory dictionary directly
        input=user_input
    )
    
    # Run the agent with the updated prompt
    output = agent.run(current_prompt)
    
    if "Action: Ask user" in output:
        question = output.split("Question: ")[1].strip()
        if "plant" in question.lower():
            memory["last_question"] = "plant"
        elif "root crop" in question.lower():
            memory["last_question"] = "root_crop"
        elif "suitable for outdoor" in question.lower():
            memory["last_question"] = "location_suitability"
            memory["location_provided"] = True
        return question
    else:
        if "Salute you explorer!" in output:
            memory["location_cautions"] = output
            memory["answer"] = output
        elif memory["location_cautions"]:
            memory["answer"] = output + " " + memory["location_cautions"]
        else:
            memory["answer"] = output
        return output

# Set up Gradio interface
interface = Interface(
    fn=conversation_handler,
    inputs="text",
    outputs="text",
    title="Garden Magus",
    description="Ask about planting or pruning based on moon indices."
)

# Launch the application
if __name__ == "__main__":
    interface.launch()