Sephfox commited on
Commit
f1d7262
·
verified ·
1 Parent(s): e853dc5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -47,11 +47,12 @@ emotions_target = pd.Categorical(df['emotion']).codes
47
  emotion_classes = pd.Categorical(df['emotion']).categories
48
 
49
  # Memory-efficient Neural Network with PyTorch
 
50
  class MemoryEfficientNN(nn.Module):
51
  def __init__(self, input_size, hidden_size, num_classes):
52
  super(MemoryEfficientNN, self).__init__()
53
  self.layers = nn.Sequential(
54
- nn.Linear(input_size, hidden_size),
55
  nn.ReLU(),
56
  nn.Dropout(0.2),
57
  nn.Linear(hidden_size, hidden_size),
@@ -61,7 +62,7 @@ class MemoryEfficientNN(nn.Module):
61
  )
62
 
63
  def forward(self, x):
64
- return self.layers(x)
65
 
66
  # Memory-efficient dataset
67
  class MemoryEfficientDataset(IterableDataset):
@@ -282,7 +283,7 @@ def process_input(text):
282
 
283
  rf_prediction = rf_model.predict(encoded_text)[0]
284
  isolation_score = isolation_forest.decision_function(encoded_text)[0]
285
- nn_prediction = model(torch.FloatTensor(encoded_text.toarray()).to(device)).argmax(dim=1).item()
286
 
287
  predicted_emotion = emotion_classes[rf_prediction]
288
  sentiment_score = isolation_score
 
47
  emotion_classes = pd.Categorical(df['emotion']).categories
48
 
49
  # Memory-efficient Neural Network with PyTorch
50
+
51
  class MemoryEfficientNN(nn.Module):
52
  def __init__(self, input_size, hidden_size, num_classes):
53
  super(MemoryEfficientNN, self).__init__()
54
  self.layers = nn.Sequential(
55
+ nn.Embedding(input_size, hidden_size),
56
  nn.ReLU(),
57
  nn.Dropout(0.2),
58
  nn.Linear(hidden_size, hidden_size),
 
62
  )
63
 
64
  def forward(self, x):
65
+ return self.layers(x.long())
66
 
67
  # Memory-efficient dataset
68
  class MemoryEfficientDataset(IterableDataset):
 
283
 
284
  rf_prediction = rf_model.predict(encoded_text)[0]
285
  isolation_score = isolation_forest.decision_function(encoded_text)[0]
286
+ nn_prediction = model(torch.LongTensor(encoded_text.todense()).to(device)).argmax(dim=1).item()
287
 
288
  predicted_emotion = emotion_classes[rf_prediction]
289
  sentiment_score = isolation_score