Sephfox commited on
Commit
50a899a
·
verified ·
1 Parent(s): 8a5748f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -68,13 +68,13 @@ class MemoryEfficientNN(nn.Module):
68
  class MemoryEfficientDataset(IterableDataset):
69
  def __init__(self, X, y, batch_size):
70
  self.X = X
71
- self.y = torch.LongTensor(y.astype(int)) # Convert labels to long tensors
72
  self.batch_size = batch_size
73
 
74
  def __iter__(self):
75
  for i in range(0, len(self.y), self.batch_size):
76
  X_batch = self.X[i:i+self.batch_size].toarray()
77
- y_batch = self.y[i:i+self.batch_size].unsqueeze(1) # Add a new dimension to the labels
78
  yield torch.FloatTensor(X_batch), y_batch
79
  # Train Memory-Efficient Neural Network
80
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
@@ -269,7 +269,6 @@ def get_sentiment(text):
269
  result = sentiment_pipeline(text)[0]
270
  return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
271
 
272
-
273
  def process_input(text):
274
  try:
275
  normalized_text = normalize_context(text)
@@ -300,6 +299,7 @@ def process_input(text):
300
  error_message = f"An error occurred: {str(e)}"
301
  print(error_message) # Logging the error
302
  return error_message, error_message, error_message, error_message
 
303
  iface = gr.Interface(
304
  fn=process_input,
305
  inputs="text",
 
68
  class MemoryEfficientDataset(IterableDataset):
69
  def __init__(self, X, y, batch_size):
70
  self.X = X
71
+ self.y = torch.LongTensor(y) # Convert labels to long tensors
72
  self.batch_size = batch_size
73
 
74
  def __iter__(self):
75
  for i in range(0, len(self.y), self.batch_size):
76
  X_batch = self.X[i:i+self.batch_size].toarray()
77
+ y_batch = self.y[i:i+self.batch_size] # No need to add a new dimension
78
  yield torch.FloatTensor(X_batch), y_batch
79
  # Train Memory-Efficient Neural Network
80
  X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
 
269
  result = sentiment_pipeline(text)[0]
270
  return f"Sentiment: {result['label']}, Score: {result['score']:.4f}"
271
 
 
272
  def process_input(text):
273
  try:
274
  normalized_text = normalize_context(text)
 
299
  error_message = f"An error occurred: {str(e)}"
300
  print(error_message) # Logging the error
301
  return error_message, error_message, error_message, error_message
302
+
303
  iface = gr.Interface(
304
  fn=process_input,
305
  inputs="text",