import streamlit as st import torch from transformers import AutoTokenizer from semviqa.ser.qatc_model import QATCForQuestionAnswering from semviqa.tvc.model import ClaimModelForClassification from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc from semviqa.tvc.tvc_eval import classify_claim import time import pandas as pd import os import psutil import gc import threading from queue import Queue # Set environment variables to optimize CPU performance os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=False)) os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False)) # Set device globally DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Load models with caching and CPU optimization @st.cache_resource() def load_model(model_name, model_class, is_bc=False, device=None): if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_name) model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2) model.eval() # CPU-specific optimizations if device == "cpu": # Use torch's quantization for CPU inference speed boost try: import torch.quantization # Quantize the model to INT8 model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) except Exception as e: st.warning(f"Quantization failed, using default model: {e}") model.to(device) return tokenizer, model # Pre-process text function to avoid doing it multiple times @st.cache_data def preprocess_text(text): # Add any text cleaning or normalization here return text.strip() # Function to extract evidence in a separate thread for better CPU utilization def extract_evidence_threaded(queue, claim, context, model_qatc, tokenizer_qatc, device, tfidf_threshold, length_ratio_threshold): start_time = time.time() with torch.no_grad(): evidence = extract_evidence_tfidf_qatc( claim, context, model_qatc, tokenizer_qatc, device, confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold ) evidence_time = time.time() - start_time queue.put((evidence, evidence_time)) # Function to classify in a separate thread def classify_claim_threaded(queue, claim, evidence, model, tokenizer, device): with torch.no_grad(): result = classify_claim(claim, evidence, model, tokenizer, device) queue.put(result) # Optimized function for evidence extraction and classification with better CPU performance def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc, model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold): # Use thread for evidence extraction to allow garbage collection in between evidence_queue = Queue() evidence_thread = threading.Thread( target=extract_evidence_threaded, args=(evidence_queue, claim, context, model_qatc, tokenizer_qatc, DEVICE, tfidf_threshold, length_ratio_threshold) ) evidence_thread.start() evidence_thread.join() evidence, evidence_time = evidence_queue.get() # Explicit garbage collection after evidence extraction gc.collect() # Classify the claim verdict_start_time = time.time() with torch.no_grad(): prob3class, pred_tc = classify_claim( claim, evidence, model_tc, tokenizer_tc, DEVICE ) # Only run binary classifier if needed prob2class, pred_bc = 0, 0 if pred_tc != 0: prob2class, pred_bc = classify_claim( claim, evidence, model_bc, tokenizer_bc, DEVICE ) verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc] else: verdict = "NEI" verdict_time = time.time() - verdict_start_time return { "evidence": evidence, "verdict": verdict, "evidence_time": evidence_time, "verdict_time": verdict_time, "prob3class": prob3class.item() if isinstance(prob3class, torch.Tensor) else prob3class, "pred_tc": pred_tc, "prob2class": prob2class.item() if isinstance(prob2class, torch.Tensor) else prob2class, "pred_bc": pred_bc } # Set up page configuration st.set_page_config(page_title="SemViQA Demo", layout="wide") # Custom CSS: fixed header and tabs, dynamic height, result box formatting # Custom CSS: fixed header and tabs, dynamic height, result box formatting st.markdown( """ """, unsafe_allow_html=True, ) # Container for the whole content with dynamic height with st.container(): st.markdown("

SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking

", unsafe_allow_html=True) st.markdown("""

Nam V. Nguyen*, Dien X. Tran*, Thanh T. Tran, Anh T. Hoang, Tai V. Duong, Di T. Le, Phuc-Lu Le

""", unsafe_allow_html=True) # Sidebar: Global Settings with st.sidebar.expander("⚙️ Settings", expanded=True): tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01) length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01) qatc_model_name = st.selectbox("QATC Model", [ "SemViQA/qatc-infoxlm-viwikifc", "SemViQA/qatc-infoxlm-isedsc01", "SemViQA/qatc-vimrc-viwikifc", "SemViQA/qatc-vimrc-isedsc01" ]) bc_model_name = st.selectbox("Binary Classification Model", [ "SemViQA/bc-xlmr-viwikifc", "SemViQA/bc-xlmr-isedsc01", "SemViQA/bc-infoxlm-viwikifc", "SemViQA/bc-infoxlm-isedsc01", "SemViQA/bc-erniem-viwikifc", "SemViQA/bc-erniem-isedsc01" ]) tc_model_name = st.selectbox("3-Class Classification Model", [ "SemViQA/tc-xlmr-viwikifc", "SemViQA/tc-xlmr-isedsc01", "SemViQA/tc-infoxlm-viwikifc", "SemViQA/tc-infoxlm-isedsc01", "SemViQA/tc-erniem-viwikifc", "SemViQA/tc-erniem-isedsc01" ]) show_details = st.checkbox("Show Probability Details", value=False) # Add CPU optimization settings st.subheader("CPU Performance Settings") num_threads = st.slider("Number of CPU Threads", 1, psutil.cpu_count(), psutil.cpu_count(logical=False)) os.environ["OMP_NUM_THREADS"] = str(num_threads) os.environ["MKL_NUM_THREADS"] = str(num_threads) # Load models once and keep them in memory tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering, device=DEVICE) tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True, device=DEVICE) tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification, device=DEVICE) st.session_state.models_loaded = True # Store verification history if 'history' not in st.session_state: st.session_state.history = [] if 'latest_result' not in st.session_state: st.session_state.latest_result = None # Icons for results verdict_icons = { "SUPPORTED": "✅", "REFUTED": "❌", "NEI": "⚠️" } # Tabs: Verify, History tabs = st.tabs(["Verify", "History"]) # --- Tab Verify --- with tabs[0]: st.subheader("Verify a Claim") # 2-column layout: input on the left, results on the right col_input, col_result = st.columns([2, 1]) with col_input: claim = st.text_area("Enter Claim", "Chiến tranh với Campuchia đã kết thúc trước khi Việt Nam thống nhất.") context = st.text_area("Enter Context", "Sau khi thống nhất, Việt Nam tiếp tục gặp khó khăn do sự sụp đổ và tan rã của đồng minh Liên Xô cùng Khối phía Đông, các lệnh cấm vận của Hoa Kỳ, chiến tranh với Campuchia, biên giới giáp Trung Quốc và hậu quả của chính sách bao cấp sau nhiều năm áp dụng. Năm 1986, Đảng Cộng sản ban hành cải cách đổi mới, tạo điều kiện hình thành kinh tế thị trường và hội nhập sâu rộng. Cải cách đổi mới kết hợp cùng quy mô dân số lớn đưa Việt Nam trở thành một trong những nước đang phát triển có tốc độ tăng trưởng thuộc nhóm nhanh nhất thế giới, được coi là Hổ mới châu Á dù cho vẫn gặp phải những thách thức như tham nhũng, tội phạm gia tăng, ô nhiễm môi trường và phúc lợi xã hội chưa đầy đủ. Ngoài ra, giới bất đồng chính kiến, chính phủ một số nước phương Tây và các tổ chức theo dõi nhân quyền có quan điểm chỉ trích hồ sơ nhân quyền của Việt Nam liên quan đến các vấn đề tôn giáo, kiểm duyệt truyền thông, hạn chế hoạt động ủng hộ nhân quyền cùng các quyền tự do dân sự.") verify_button = st.button("Verify", key="verify_button") with col_result: st.markdown("

Verification Result

", unsafe_allow_html=True) if verify_button: # Preprocess texts to improve tokenization speed preprocessed_claim = preprocess_text(claim) preprocessed_context = preprocess_text(context) # Placeholder for displaying result/loading with st.spinner("Verifying..."): start_time = time.time() # Clear memory before verification gc.collect() # Use the optimized verification function result = perform_verification( preprocessed_claim, preprocessed_context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc, model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold ) total_time = time.time() - start_time # Format details if needed details = "" if show_details: details = f""" 3-Class Probability: {result['prob3class']:.2f} 3-Class Predicted Label: {['NEI', 'SUPPORTED', 'REFUTED'][result['pred_tc']]} 2-Class Probability: {result['prob2class']:.2f} 2-Class Predicted Label: {['SUPPORTED', 'REFUTED'][result['pred_bc']] if isinstance(result['pred_bc'], int) and result['pred_tc'] != 0 else 'Not used'} """ st.session_state.latest_result = { "claim": claim, "evidence": result['evidence'], "verdict": result['verdict'], "evidence_time": result['evidence_time'], "verdict_time": result['verdict_time'], "total_time": total_time, "details": details, "qatc_model": qatc_model_name, "bc_model": bc_model_name, "tc_model": tc_model_name } # Add new result to history st.session_state.history.append(st.session_state.latest_result) # Clear memory after processing gc.collect() # Display the result after verification res = st.session_state.latest_result st.markdown(f"""

Claim: {res['claim']}

Evidence: {res['evidence']}

{verdict_icons.get(res['verdict'], '')}{res['verdict']}

Evidence Inference Time: {res['evidence_time']:.2f} seconds

Verdict Inference Time: {res['verdict_time']:.2f} seconds

Total Execution Time: {res['total_time']:.2f} seconds

{f"
{res['details']}
" if show_details else ""}
""", unsafe_allow_html=True) # Download Verification Result Feature result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}" st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain") else: st.info("No verification result yet.") # --- Tab History --- with tabs[1]: st.subheader("Verification History") if st.session_state.history: # Convert history to DataFrame for easy download history_df = pd.DataFrame(st.session_state.history) st.download_button( label="Download Full History", data=history_df.to_csv(index=False).encode('utf-8'), file_name="verification_history.csv", mime="text/csv", ) for idx, record in enumerate(reversed(st.session_state.history), 1): st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}") else: st.write("No verification history yet.")