semviqa-demo / app.py
xuandin's picture
Update app.py
f4d5aab verified
raw
history blame
3.54 kB
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name)
return tokenizer, model
# UI Configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
st.markdown("""
<style>
.big-title { font-size: 36px; font-weight: bold; color: #4A90E2; text-align: center; }
.sub-title { font-size: 20px; color: #666; text-align: center; }
.stButton>button { background-color: #4CAF50; color: white; font-size: 16px; width: 100%; border-radius: 8px; padding: 10px; }
.stTextArea textarea { font-size: 16px; }
.result-box { background-color: #f9f9f9; padding: 20px; border-radius: 10px; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); }
</style>
""", unsafe_allow_html=True)
st.markdown("<p class='big-title'>πŸ” SemViQA: Vietnamese Fact-Checking System</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
# Sidebar - Configuration Settings
with st.sidebar.expander("βš™οΈ Settings", expanded=False):
tfidf_threshold = st.slider("πŸ”§ TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("πŸ“ Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("πŸ€– QATC Model", ["xuandin/semviqa-qatc-vimrc-viwikifc"])
bc_model_name = st.selectbox("🏷️ Binary Classification Model", ["xuandin/semviqa-bc"])
tc_model_name = st.selectbox("πŸ“Š Three-Class Model", ["xuandin/semviqa-tc"])
# Load selected models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# User Input Fields
claim = st.text_area("✍️ Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("πŸ“– Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 kmΒ² with a population of more than 98 million people.")
if st.button("πŸ”Ž Verify"):
# Extract evidence
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc, "cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold
)
# Claim Classification
verdict = "NEI"
prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
if pred_tc != 0:
prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
# Display Results
st.markdown(f"""
<div class='result-box'>
<h3>πŸ“Œ Result</h3>
<p><strong>πŸ” Evidence:</strong> {evidence}</p>
<p><strong>βœ… Verdict:</strong> {verdict}</p>
</div>
""", unsafe_allow_html=True)