Spaces:
Sleeping
Sleeping
File size: 11,299 Bytes
f4d5aab 65d40d5 f4d5aab ee53ecb f4d5aab ee53ecb 35de67c f4d5aab 8a052ba f4d5aab fb62d04 4d37b8b f4d5aab fb62d04 4d37b8b fb62d04 4d37b8b fb62d04 4d37b8b f4d5aab fb62d04 4d37b8b f4d5aab 4d37b8b 4ebd212 65d40d5 4d37b8b f0d09f3 4ebd212 8a052ba 4ebd212 8a052ba f0d09f3 8a052ba 4d37b8b f4d5aab f0d09f3 8a052ba f4d5aab 4d37b8b 8a052ba f4d5aab f0d09f3 8a052ba f0d09f3 4d37b8b f0d09f3 4d37b8b f0d09f3 4d37b8b 8a052ba 4d37b8b 8a052ba 4ebd212 4d37b8b 4ebd212 4d37b8b 4fdfda4 4d37b8b 4fdfda4 8a052ba 4fdfda4 4d37b8b 4fdfda4 4d37b8b 4fdfda4 4d37b8b 4fdfda4 8a052ba 4d37b8b 8a052ba 4d37b8b f0d09f3 4ebd212 8a052ba 65d40d5 8a052ba 4ebd212 8a052ba 4ebd212 f4d5aab 4d37b8b f0d09f3 4ebd212 8a052ba 4ebd212 4d37b8b f0d09f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time
import pandas as pd
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
model.eval()
return tokenizer, model
# Set up page configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
# Custom CSS and JavaScript to make the sidebar sticky
st.markdown(
"""
<style>
/* Fix the sidebar */
.stSidebar {
position: fixed;
top: 0;
height: 100vh;
overflow-y: auto;
z-index: 1000;
}
/* Adjust main content to avoid overlap with the fixed sidebar */
.main .block-container {
margin-left: 25rem; /* Adjust this value based on your sidebar width */
}
</style>
<script>
// JavaScript to make the sidebar sticky
window.addEventListener('scroll', function() {
const sidebar = document.querySelector('.stSidebar');
if (sidebar) {
sidebar.style.top = `${window.scrollY}px`;
}
});
</script>
""",
unsafe_allow_html=True,
)
# Container for the whole content with dynamic height
with st.container():
st.markdown("<p class='big-title'>SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter the claim and context to verify its accuracy</p>", unsafe_allow_html=True)
# Sidebar: Global Settings
with st.sidebar.expander("⚙️ Settings", expanded=True):
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("QATC Model", [
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
])
bc_model_name = st.selectbox("Binary Classification Model", [
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
])
tc_model_name = st.selectbox("3-Class Classification Model", [
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
])
show_details = st.checkbox("Show Probability Details", value=False)
# Store verification history
if 'history' not in st.session_state:
st.session_state.history = []
if 'latest_result' not in st.session_state:
st.session_state.latest_result = None
# Load the selected models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# Icons for results
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
# Tabs: Verify, History, About
tabs = st.tabs(["Verify", "History", "About"])
# --- Tab Verify ---
with tabs[0]:
st.subheader("Verify a Claim")
# 2-column layout: input on the left, results on the right
col_input, col_result = st.columns([2, 1])
with col_input:
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.")
verify_button = st.button("Verify", key="verify_button")
with col_result:
st.markdown("<h3>Verification Result</h3>", unsafe_allow_html=True)
if verify_button:
# Placeholder for displaying result/loading
with st.spinner("Verifying..."): # Thêm spinner khi đang xử lý
start_time = time.time() # Bắt đầu đo thời gian inference
with torch.no_grad():
# Extract evidence
evidence_start_time = time.time()
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
"cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold,
length_ratio_threshold=length_ratio_threshold
)
evidence_time = time.time() - evidence_start_time
# Classify the claim
verdict_start_time = time.time()
verdict = "NEI"
details = ""
prob3class, pred_tc = classify_claim(
claim, evidence, model_tc, tokenizer_tc,
"cuda" if torch.cuda.is_available() else "cpu"
)
if pred_tc != 0:
prob2class, pred_bc = classify_claim(
claim, evidence, model_bc, tokenizer_bc,
"cuda" if torch.cuda.is_available() else "cpu"
)
if pred_bc == 0:
verdict = "SUPPORTED"
elif prob2class > prob3class:
verdict = "REFUTED"
else:
verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
if show_details:
details = f"""
<p><strong>3-Class Probability:</strong> {prob3class.item():.2f}</p>
<p><strong>3-Class Predicted Label:</strong> {['NEI', 'SUPPORTED', 'REFUTED'][pred_tc]}</p>
<p><strong>2-Class Probability:</strong> {prob2class.item():.2f}</p>
<p><strong>2-Class Predicted Label:</strong> {['SUPPORTED', 'REFUTED'][pred_bc]}</p>
"""
verdict_time = time.time() - verdict_start_time
# Store verification history and the latest result
st.session_state.history.append({
"claim": claim,
"evidence": evidence,
"verdict": verdict,
"evidence_time": evidence_time,
"verdict_time": verdict_time,
"details": details
})
st.session_state.latest_result = {
"claim": claim,
"evidence": evidence,
"verdict": verdict,
"evidence_time": evidence_time,
"verdict_time": verdict_time,
"details": details
}
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Display the result after verification
res = st.session_state.latest_result
st.markdown(f"""
<div class='result-box'>
<p><strong>Claim:</strong> {res['claim']}</p>
<p><strong>Evidence:</strong> {res['evidence']}</p>
<p><strong>Evidence Inference Time:</strong> {res['evidence_time']:.2f} seconds</p>
<p><strong>Verdict Inference Time:</strong> {res['verdict_time']:.2f} seconds</p>
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p>
{res['details']}
</div>
""", unsafe_allow_html=True)
# Download Verification Result Feature
result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}"
st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain")
else:
st.info("No verification result yet.")
# --- Tab History ---
with tabs[1]:
st.subheader("Verification History")
if st.session_state.history:
# Convert history to DataFrame for easy download
history_df = pd.DataFrame(st.session_state.history)
st.download_button(
label="Download Full History",
data=history_df.to_csv(index=False).encode('utf-8'),
file_name="verification_history.csv",
mime="text/csv",
)
for idx, record in enumerate(reversed(st.session_state.history), 1):
st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
else:
st.write("No verification history yet.")
# --- Tab About ---
with tabs[2]:
st.subheader("About")
st.markdown("""
<p align="center">
<a href="https://arxiv.org/abs/2503.00955">
<img src="https://img.shields.io/badge/arXiv-2411.00918-red?style=flat&label=arXiv">
</a>
<a href="https://huggingface.co/SemViQA">
<img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=flat">
</a>
<a href="https://pypi.org/project/SemViQA">
<img src="https://img.shields.io/pypi/v/SemViQA?color=blue&label=PyPI">
</a>
<a href="https://github.com/DAVID-NGUYEN-S16/SemViQA">
<img src="https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social">
</a>
</p>
""", unsafe_allow_html=True)
st.markdown("""
**Description:**
SemViQA is a Semantic QA system designed for fact verification in Vietnamese.
The system extracts evidence from the provided context and classifies claims as **SUPPORTED**, **REFUTED**, or **NEI** (Not Enough Information) using advanced models.
""") |