Spaces:
Sleeping
Sleeping
File size: 3,930 Bytes
f4d5aab 266fd09 f4d5aab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name)
return tokenizer, model
# UI Configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
st.markdown("""
<style>
.big-title { font-size: 36px; font-weight: bold; color: #4A90E2; text-align: center; }
.sub-title { font-size: 20px; color: #666; text-align: center; }
.stButton>button { background-color: #4CAF50; color: white; font-size: 16px; width: 100%; border-radius: 8px; padding: 10px; }
.stTextArea textarea { font-size: 16px; }
.result-box { background-color: #f9f9f9; padding: 20px; border-radius: 10px; box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); }
</style>
""", unsafe_allow_html=True)
st.markdown("<p class='big-title'>π SemViQA: Vietnamese Fact-Checking System</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
# Sidebar - Configuration Settings
with st.sidebar.expander("βοΈ Settings", expanded=False):
tfidf_threshold = st.slider("π§ TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("π Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("π€ QATC Model", ["SemViQA/qatc-infoxlm-viwikifc","SemViQA/qatc-infoxlm-isedsc01","SemViQA/qatc-vimrc-viwikifc","SemViQA/qatc-vimrc-isedsc01"])
bc_model_name = st.selectbox("π·οΈ Binary Classification Model", ["SemViQA/bc-xlmr-viwikifc","SemViQA/bc-xlmr-isedsc01","SemViQA/bc-infoxlm-viwikifc","SemViQA/bc-infoxlm-isedsc01","SemViQA/bc-erniem-viwikifc","SemViQA/bc-erniem-isedsc01"])
tc_model_name = st.selectbox("π Three-Class Model", ["SemViQA/tc-xlmr-viwikifc","SemViQA/tc-xlmr-isedsc01","SemViQA/tc-infoxlm-viwikifc","SemViQA/tc-infoxlm-isedsc01","SemViQA/tc-erniem-viwikifc","SemViQA/tc-erniem-isedsc01"])
# Load selected models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# User Input Fields
claim = st.text_area("βοΈ Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("π Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 kmΒ² with a population of more than 98 million people.")
if st.button("π Verify"):
# Extract evidence
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc, "cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold, length_ratio_threshold=length_ratio_threshold
)
# Claim Classification
verdict = "NEI"
prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
if pred_tc != 0:
prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
# Display Results
st.markdown(f"""
<div class='result-box'>
<h3>π Result</h3>
<p><strong>π Evidence:</strong> {evidence}</p>
<p><strong>β
Verdict:</strong> {verdict}</p>
</div>
""", unsafe_allow_html=True)
|