Spaces:
Sleeping
Sleeping
File size: 12,794 Bytes
f4d5aab 4fdfda4 f4d5aab ee53ecb f4d5aab ee53ecb 35de67c f4d5aab 8a052ba f4d5aab 4d37b8b f4d5aab 4d37b8b f4d5aab 4d37b8b f4d5aab 4d37b8b 4ebd212 4d37b8b f0d09f3 4ebd212 8a052ba 4ebd212 8a052ba f0d09f3 8a052ba 4d37b8b f4d5aab f0d09f3 8a052ba f4d5aab 4d37b8b 8a052ba f4d5aab f0d09f3 8a052ba f0d09f3 4d37b8b f0d09f3 4d37b8b f0d09f3 4d37b8b 8a052ba 4d37b8b 8a052ba 4ebd212 4d37b8b 4ebd212 4d37b8b 4fdfda4 4d37b8b 4fdfda4 8a052ba 4fdfda4 4d37b8b 4fdfda4 4d37b8b 4fdfda4 4d37b8b 4fdfda4 8a052ba 4d37b8b 8a052ba 4d37b8b f0d09f3 4ebd212 8a052ba 4ebd212 8a052ba 4ebd212 f4d5aab 4d37b8b f0d09f3 4ebd212 8a052ba 4ebd212 4d37b8b f0d09f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time # Thêm thư viện time để đo thời gian inference
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
model.eval()
return tokenizer, model
# Set up page configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
# Custom CSS: fixed header and tabs, dynamic height, result box formatting
st.markdown(
"""
<style>
html, body {
height: 100%;
margin: 0;
overflow: hidden;
}
.main-container {
height: calc(100vh - 55px); /* Browser height - 55px */
overflow-y: auto;
padding: 20px;
}
.big-title {
font-size: 36px;
font-weight: bold;
color: #4A90E2;
text-align: center;
margin-top: 20px;
position: sticky; /* Pin the header */
top: 0;
background-color: white; /* Ensure the header covers content when scrolling */
z-index: 100; /* Ensure it's above other content */
}
.sub-title {
font-size: 20px;
color: #666;
text-align: center;
margin-bottom: 20px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
font-size: 16px;
width: 100%;
border-radius: 8px;
padding: 10px;
}
.stTextArea textarea {
font-size: 16px;
min-height: 120px;
}
.result-box {
background-color: #f9f9f9;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
margin-top: 20px;
}
.verdict {
font-size: 24px;
font-weight: bold;
margin: 0;
display: flex;
align-items: center;
}
.verdict-icon {
margin-right: 10px;
}
/* Fix the tabs at the top */
div[data-baseweb="tab-list"] {
position: sticky;
top: 55px; /* Height of the header */
background-color: white;
z-index: 99;
}
.stSidebar .sidebar-content {
background-color: #f0f2f6;
padding: 20px;
border-radius: 10px;
}
.stSidebar .st-expander {
background-color: #ffffff;
border-radius: 10px;
padding: 10px;
margin-bottom: 10px;
}
.stSidebar .stSlider {
margin-bottom: 20px;
}
.stSidebar .stSelectbox {
margin-bottom: 20px;
}
.stSidebar .stCheckbox {
margin-bottom: 20px;
}
</style>
""",
unsafe_allow_html=True,
)
# Container for the whole content with dynamic height
with st.container():
st.markdown("<p class='big-title'>SemViQA: Vietnamese Semantic QA for Fact Verification</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter the claim and context to verify its accuracy</p>", unsafe_allow_html=True)
# Sidebar: Global Settings
with st.sidebar.expander("⚙️ Settings", expanded=True):
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("QATC Model", [
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
])
bc_model_name = st.selectbox("Binary Classification Model", [
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
])
tc_model_name = st.selectbox("3-Class Classification Model", [
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
])
show_details = st.checkbox("Show Probability Details", value=False)
# Store verification history
if 'history' not in st.session_state:
st.session_state.history = []
if 'latest_result' not in st.session_state:
st.session_state.latest_result = None
# Load the selected models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# Icons for results
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
# Tabs: Verify, History, About
tabs = st.tabs(["Verify", "History", "About"])
# --- Tab Verify ---
with tabs[0]:
st.subheader("Verify a Claim")
# 2-column layout: input on the left, results on the right
col_input, col_result = st.columns([2, 1])
with col_input:
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.")
verify_button = st.button("Verify", key="verify_button")
with col_result:
st.markdown("<h3>Verification Result</h3>", unsafe_allow_html=True)
if verify_button:
# Placeholder for displaying result/loading
with st.spinner("Verifying..."): # Thêm spinner khi đang xử lý
start_time = time.time() # Bắt đầu đo thời gian inference
with torch.no_grad():
# Extract evidence
evidence_start_time = time.time()
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
"cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold,
length_ratio_threshold=length_ratio_threshold
)
evidence_time = time.time() - evidence_start_time
# Hiển thị evidence trước
st.markdown(f"""
<div class='result-box'>
<p><strong>Evidence:</strong> {evidence}</p>
<p><strong>Evidence Inference Time:</strong> {evidence_time:.2f} seconds</p>
</div>
""", unsafe_allow_html=True)
# Classify the claim
verdict_start_time = time.time()
verdict = "NEI"
details = ""
prob3class, pred_tc = classify_claim(
claim, evidence, model_tc, tokenizer_tc,
"cuda" if torch.cuda.is_available() else "cpu"
)
if pred_tc != 0:
prob2class, pred_bc = classify_claim(
claim, evidence, model_bc, tokenizer_bc,
"cuda" if torch.cuda.is_available() else "cpu"
)
if pred_bc == 0:
verdict = "SUPPORTED"
elif prob2class > prob3class:
verdict = "REFUTED"
else:
verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
if show_details:
details = f"""
<p><strong>3-Class Probability:</strong> {prob3class.item():.2f}</p>
<p><strong>3-Class Predicted Label:</strong> {['NEI', 'SUPPORTED', 'REFUTED'][pred_tc]}</p>
<p><strong>2-Class Probability:</strong> {prob2class.item():.2f}</p>
<p><strong>2-Class Predicted Label:</strong> {['SUPPORTED', 'REFUTED'][pred_bc]}</p>
"""
verdict_time = time.time() - verdict_start_time
# Store verification history and the latest result
st.session_state.history.append({
"claim": claim,
"evidence": evidence,
"verdict": verdict,
"evidence_time": evidence_time,
"verdict_time": verdict_time,
"details": details
})
st.session_state.latest_result = {
"claim": claim,
"evidence": evidence,
"verdict": verdict,
"evidence_time": evidence_time,
"verdict_time": verdict_time,
"details": details
}
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Display the result after verification
res = st.session_state.latest_result
st.markdown(f"""
<div class='result-box'>
<p><strong>Claim:</strong> {res['claim']}</p>
<p><strong>Evidence:</strong> {res['evidence']}</p>
<p><strong>Evidence Inference Time:</strong> {res['evidence_time']:.2f} seconds</p>
<p><strong>Verdict Inference Time:</strong> {res['verdict_time']:.2f} seconds</p>
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p>
{res['details']}
</div>
""", unsafe_allow_html=True)
# Download Verification Result Feature
result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}"
st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain")
else:
st.info("No verification result yet.")
# --- Tab History ---
with tabs[1]:
st.subheader("Verification History")
if st.session_state.history:
for idx, record in enumerate(reversed(st.session_state.history), 1):
st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
else:
st.write("No verification history yet.")
# --- Tab About ---
with tabs[2]:
st.subheader("About")
st.markdown("""
<p align="center">
<a href="https://arxiv.org/abs/2503.00955">
<img src="https://img.shields.io/badge/arXiv-2411.00918-red?style=flat&label=arXiv">
</a>
<a href="https://huggingface.co/SemViQA">
<img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=flat">
</a>
<a href="https://pypi.org/project/SemViQA">
<img src="https://img.shields.io/pypi/v/SemViQA?color=blue&label=PyPI">
</a>
<a href="https://github.com/DAVID-NGUYEN-S16/SemViQA">
<img src="https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social">
</a>
</p>
""", unsafe_allow_html=True)
st.markdown("""
**Description:**
SemViQA is a Semantic QA system designed for fact verification in Vietnamese.
The system extracts evidence from the provided context and classifies claims as **SUPPORTED**, **REFUTED**, or **NEI** (Not Enough Information) using advanced models.
""") |