File size: 10,899 Bytes
f4d5aab
 
 
 
 
 
 
8a052ba
f4d5aab
 
 
ee53ecb
f4d5aab
ee53ecb
35de67c
f4d5aab
 
8a052ba
f4d5aab
 
4d37b8b
 
 
f4d5aab
4d37b8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d5aab
4d37b8b
 
 
f4d5aab
4d37b8b
4ebd212
4d37b8b
 
f0d09f3
 
4ebd212
 
 
 
8a052ba
 
 
 
 
4ebd212
8a052ba
 
 
 
 
 
 
f0d09f3
8a052ba
 
 
 
 
 
 
4d37b8b
f4d5aab
f0d09f3
8a052ba
 
 
 
f4d5aab
4d37b8b
8a052ba
 
 
f4d5aab
f0d09f3
8a052ba
 
 
 
 
f0d09f3
4d37b8b
f0d09f3
 
4d37b8b
f0d09f3
4d37b8b
 
8a052ba
4d37b8b
8a052ba
4ebd212
 
4d37b8b
 
4ebd212
4d37b8b
 
 
 
 
 
f0d09f3
4d37b8b
f0d09f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a052ba
 
f0d09f3
 
 
 
 
 
 
 
4d37b8b
 
f0d09f3
 
 
 
 
 
 
 
 
 
 
4d37b8b
f0d09f3
 
4d37b8b
 
8a052ba
4d37b8b
35de67c
8a052ba
4ebd212
8a052ba
 
35de67c
 
4d37b8b
8a052ba
4ebd212
8a052ba
4d37b8b
8a052ba
4d37b8b
f0d09f3
4ebd212
8a052ba
 
4ebd212
8a052ba
4ebd212
f4d5aab
4d37b8b
f0d09f3
4ebd212
8a052ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebd212
4d37b8b
 
f0d09f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import io

# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
    model.eval()
    return tokenizer, model

# Set up page configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")

# Custom CSS: fixed header and tabs, dynamic height, result box formatting
st.markdown(
    """
    <style>
    html, body {
        height: 100%;
        margin: 0;
        overflow: hidden;
    }
    .main-container {
        height: calc(100vh - 55px); /* Browser height - 55px */
        overflow-y: auto;
        padding: 20px;
    }
    .big-title {
        font-size: 36px;
        font-weight: bold;
        color: #4A90E2;
        text-align: center;
        margin-top: 20px;
        position: sticky; /* Pin the header */
        top: 0;
        background-color: white; /* Ensure the header covers content when scrolling */
        z-index: 100; /* Ensure it's above other content */
    }
    .sub-title {
        font-size: 20px;
        color: #666;
        text-align: center;
        margin-bottom: 20px;
    }
    .stButton>button {
        background-color: #4CAF50;
        color: white;
        font-size: 16px;
        width: 100%;
        border-radius: 8px;
        padding: 10px;
    }
    .stTextArea textarea {
        font-size: 16px;
        min-height: 120px;
    }
    .result-box {
        background-color: #f9f9f9;
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
        margin-top: 20px;
    }
    .verdict {
        font-size: 24px;
        font-weight: bold;
        margin: 0;
        display: flex;
        align-items: center;
    }
    .verdict-icon {
        margin-right: 10px;
    }
    /* Fix the tabs at the top */
    div[data-baseweb="tab-list"] {
        position: sticky;
        top: 55px; /* Height of the header */
        background-color: white;
        z-index: 99;
    }
    .stSidebar .sidebar-content {
        background-color: #f0f2f6;
        padding: 20px;
        border-radius: 10px;
    }
    .stSidebar .st-expander {
        background-color: #ffffff;
        border-radius: 10px;
        padding: 10px;
        margin-bottom: 10px;
    }
    .stSidebar .stSlider {
        margin-bottom: 20px;
    }
    .stSidebar .stSelectbox {
        margin-bottom: 20px;
    }
    .stSidebar .stCheckbox {
        margin-bottom: 20px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

# Container for the whole content with dynamic height
with st.container():
    st.markdown("<p class='big-title'>SemViQA: Vietnamese Semantic QA for Fact Verification</p>", unsafe_allow_html=True)
    st.markdown("<p class='sub-title'>Enter the claim and context to verify its accuracy</p>", unsafe_allow_html=True)

    # Sidebar: Global Settings
    with st.sidebar.expander("⚙️ Settings", expanded=True):
        tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
        length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
        qatc_model_name = st.selectbox("QATC Model", [
            "SemViQA/qatc-infoxlm-viwikifc",
            "SemViQA/qatc-infoxlm-isedsc01",
            "SemViQA/qatc-vimrc-viwikifc",
            "SemViQA/qatc-vimrc-isedsc01"
        ])
        bc_model_name = st.selectbox("Binary Classification Model", [
            "SemViQA/bc-xlmr-viwikifc",
            "SemViQA/bc-xlmr-isedsc01",
            "SemViQA/bc-infoxlm-viwikifc",
            "SemViQA/bc-infoxlm-isedsc01",
            "SemViQA/bc-erniem-viwikifc",
            "SemViQA/bc-erniem-isedsc01"
        ])
        tc_model_name = st.selectbox("3-Class Classification Model", [
            "SemViQA/tc-xlmr-viwikifc",
            "SemViQA/tc-xlmr-isedsc01",
            "SemViQA/tc-infoxlm-viwikifc",
            "SemViQA/tc-infoxlm-isedsc01",
            "SemViQA/tc-erniem-viwikifc",
            "SemViQA/tc-erniem-isedsc01"
        ])
        show_details = st.checkbox("Show Probability Details", value=False)

    # Store verification history
    if 'history' not in st.session_state:
        st.session_state.history = []
    if 'latest_result' not in st.session_state:
        st.session_state.latest_result = None

    # Load the selected models
    tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
    tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
    tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)

    # Icons for results
    verdict_icons = {
        "SUPPORTED": "✅",
        "REFUTED": "❌",
        "NEI": "⚠️"
    }

    # Tabs: Verify, History, About
    tabs = st.tabs(["Verify", "History", "About"])

    # --- Tab Verify ---
    with tabs[0]:
        st.subheader("Verify a Claim")
        # 2-column layout: input on the left, results on the right
        col_input, col_result = st.columns([2, 1])

        with col_input:
            claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
            context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia, covering an area of over 331,000 km² with a population of more than 98 million people.")
            verify_button = st.button("Verify", key="verify_button")

        with col_result:
            st.markdown("<h3>Verification Result</h3>", unsafe_allow_html=True)
            if verify_button:
                # Placeholder for displaying result/loading
                result_placeholder = st.empty()
                result_placeholder.markdown("<em>Verifying...</em>")

                with torch.no_grad():
                    # Extract evidence and classify the claim
                    evidence = extract_evidence_tfidf_qatc(
                        claim, context, model_qatc, tokenizer_qatc,
                        "cuda" if torch.cuda.is_available() else "cpu",
                        confidence_threshold=tfidf_threshold,
                        length_ratio_threshold=length_ratio_threshold
                    )
                    verdict = "NEI"
                    details = ""
                    prob3class, pred_tc = classify_claim(
                        claim, evidence, model_tc, tokenizer_tc,
                        "cuda" if torch.cuda.is_available() else "cpu"
                    )
                    if pred_tc != 0:
                        prob2class, pred_bc = classify_claim(
                            claim, evidence, model_bc, tokenizer_bc,
                            "cuda" if torch.cuda.is_available() else "cpu"
                        )
                        if pred_bc == 0:
                            verdict = "SUPPORTED"
                        elif prob2class > prob3class:
                            verdict = "REFUTED"
                        else:
                            verdict = ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
                        if show_details:
                            details = f"<p><strong>3-Class Probability:</strong> {prob3class.item():.2f} - <strong>2-Class Probability:</strong> {prob2class.item():.2f}</p>"

                    # Store verification history and the latest result
                    st.session_state.history.append({
                        "claim": claim,
                        "evidence": evidence,
                        "verdict": verdict
                    })
                    st.session_state.latest_result = {
                        "claim": claim,
                        "evidence": evidence,
                        "verdict": verdict,
                        "details": details
                    }

                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()

                # Display the result after verification
                res = st.session_state.latest_result
                result_placeholder.markdown(f"""
                    <div class='result-box'>
                        <p><strong>Claim:</strong> {res['claim']}</p>
                        <p><strong>Evidence:</strong> {res['evidence']}</p>
                        <p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p>
                        {res['details']}
                    </div>
                """, unsafe_allow_html=True)
                # Download Verification Result Feature
                result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}"
                st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain")
            else:
                st.info("No verification result yet.")

    # --- Tab History ---
    with tabs[1]:
        st.subheader("Verification History")
        if st.session_state.history:
            for idx, record in enumerate(reversed(st.session_state.history), 1):
                st.markdown(f"**{idx}. Claim:** {record['claim']}  \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
        else:
            st.write("No verification history yet.")

    # --- Tab About ---
    with tabs[2]:
        st.subheader("About")
        st.markdown("""
            <p align="center">
                <a href="https://arxiv.org/abs/2503.00955">
                    <img src="https://img.shields.io/badge/arXiv-2411.00918-red?style=flat&label=arXiv">
                </a>
                <a href="https://huggingface.co/SemViQA">
                    <img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=flat">
                </a>
                <a href="https://pypi.org/project/SemViQA">
                    <img src="https://img.shields.io/pypi/v/SemViQA?color=blue&label=PyPI">
                </a>
                <a href="https://github.com/DAVID-NGUYEN-S16/SemViQA">
                    <img src="https://img.shields.io/github/stars/DAVID-NGUYEN-S16/SemViQA?style=social">
                </a>
            </p>
        """, unsafe_allow_html=True)
        st.markdown("""
            **Description:**  
            SemViQA is a Semantic QA system designed for fact verification in Vietnamese.  
            The system extracts evidence from the provided context and classifies claims as **SUPPORTED**, **REFUTED**, or **NEI** (Not Enough Information) using advanced models.
        """)