Spaces:
Sleeping
Sleeping
File size: 16,635 Bytes
f4d5aab 65d40d5 7725101 f4d5aab 7725101 042e3b2 7725101 f4d5aab 99fbeb9 f4d5aab ee53ecb 35de67c 99fbeb9 7725101 99fbeb9 7725101 f4d5aab 99fbeb9 7725101 99fbeb9 7725101 99fbeb9 7725101 99fbeb9 7725101 99fbeb9 7725101 99fbeb9 7725101 99fbeb9 8a052ba f4d5aab 3f899a4 4d37b8b f4d5aab 3f899a4 fb62d04 3f899a4 6a1dd5e 3f899a4 4d37b8b 3f899a4 f345548 3f899a4 4d37b8b f4d5aab 4d37b8b f4d5aab 4d37b8b 4ebd212 65d40d5 5682e8a 620ddec 5682e8a 620ddec 5682e8a f0d09f3 4ebd212 8a052ba 4ebd212 12ccc3e a48f89a 8a052ba f0d09f3 12ccc3e a48f89a 8a052ba 4d37b8b 7725101 f4d5aab 042e3b2 1faa78e 042e3b2 f4d5aab f0d09f3 8a052ba f0d09f3 7264a9c f0d09f3 4d37b8b f0d09f3 4d37b8b 8a052ba 4d37b8b 8a052ba 43449cb 4d37b8b 4ebd212 4d37b8b 99fbeb9 4d37b8b 5682e8a 99fbeb9 7725101 99fbeb9 a4443df 5701a4f 99fbeb9 7725101 5701a4f 99fbeb9 a4443df 99fbeb9 7264a9c a4443df 4d37b8b 99fbeb9 d8e959c 7725101 4d37b8b 4fdfda4 3f899a4 4fdfda4 99fbeb9 4fdfda4 99fbeb9 4fdfda4 8a052ba 4d37b8b 8a052ba 4d37b8b f0d09f3 4ebd212 8a052ba 65d40d5 8a052ba 4ebd212 8a052ba 4af1026 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time
import pandas as pd
import os
import psutil
import gc
import threading
from queue import Queue
# Set environment variables to optimize CPU performance
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
# Set device globally
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load models with caching and CPU optimization
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False, device=None):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
model.eval()
# CPU-specific optimizations
if device == "cpu":
# Use torch's quantization for CPU inference speed boost
try:
import torch.quantization
# Quantize the model to INT8
model = torch.quantization.quantize_dynamic(
model, {torch.nn.Linear}, dtype=torch.qint8
)
except Exception as e:
st.warning(f"Quantization failed, using default model: {e}")
model.to(device)
return tokenizer, model
# Pre-process text function to avoid doing it multiple times
@st.cache_data
def preprocess_text(text):
# Add any text cleaning or normalization here
return text.strip()
# Function to extract evidence in a separate thread for better CPU utilization
def extract_evidence_threaded(queue, claim, context, model_qatc, tokenizer_qatc, device,
tfidf_threshold, length_ratio_threshold):
start_time = time.time()
with torch.no_grad():
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
device,
confidence_threshold=tfidf_threshold,
length_ratio_threshold=length_ratio_threshold
)
evidence_time = time.time() - start_time
queue.put((evidence, evidence_time))
# Function to classify in a separate thread
def classify_claim_threaded(queue, claim, evidence, model, tokenizer, device):
with torch.no_grad():
result = classify_claim(claim, evidence, model, tokenizer, device)
queue.put(result)
# Optimized function for evidence extraction and classification with better CPU performance
def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc,
model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold):
# Use thread for evidence extraction to allow garbage collection in between
evidence_queue = Queue()
evidence_thread = threading.Thread(
target=extract_evidence_threaded,
args=(evidence_queue, claim, context, model_qatc, tokenizer_qatc, DEVICE,
tfidf_threshold, length_ratio_threshold)
)
evidence_thread.start()
evidence_thread.join()
evidence, evidence_time = evidence_queue.get()
# Explicit garbage collection after evidence extraction
gc.collect()
# Classify the claim
verdict_start_time = time.time()
with torch.no_grad():
prob3class, pred_tc = classify_claim(
claim, evidence, model_tc, tokenizer_tc, DEVICE
)
# Only run binary classifier if needed
prob2class, pred_bc = 0, 0
if pred_tc != 0:
prob2class, pred_bc = classify_claim(
claim, evidence, model_bc, tokenizer_bc, DEVICE
)
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
else:
verdict = "NEI"
verdict_time = time.time() - verdict_start_time
return {
"evidence": evidence,
"verdict": verdict,
"evidence_time": evidence_time,
"verdict_time": verdict_time,
"prob3class": prob3class,
"pred_tc": pred_tc,
"prob2class": prob2class,
"pred_bc": pred_bc
}
# Set up page configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
# Custom CSS: fixed header and tabs, dynamic height, result box formatting
st.markdown(
"""
<style>
html, body {
height: 100%;
margin: 0;
overflow: hidden;
}
.main-container {
height: calc(100vh - 55px); /* Browser height - 55px */
overflow-y: auto;
padding: 20px;
}
.big-title {
font-size: 36px !important;
font-weight: bold;
color: #4A90E2;
text-align: center;
margin-top: 20px;
position: sticky; /* Pin the header */
top: 0;
background-color: white; /* Ensure the header covers content when scrolling */
z-index: 100; /* Ensure it's above other content */
}
.sub-title {
font-size: 20px;
color: #666;
text-align: center;
margin-bottom: 20px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
font-size: 16px;
width: 100%;
border-radius: 8px;
padding: 10px;
}
.stTextArea textarea {
font-size: 16px;
min-height: 120px;
}
.result-box {
background-color: #f9f9f9;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
margin-top: 20px;
}
.verdict {
font-size: 24px;
font-weight: bold;
margin: 0;
display: flex;
align-items: center;
}
.verdict-icon {
margin-right: 10px;
}
/* Fix the tabs at the top */
div[data-baseweb="tab-list"] {
position: sticky;
top: 55px; /* Height of the header */
background-color: white;
z-index: 99;
}
/* Fix the sidebar content */
.stSidebar .sidebar-content {
background-color: #f0f2f6;
padding: 20px;
border-radius: 10px;
position: sticky;
top: 55px; /* Height of the header */
height: calc(100vh - 75px); /* Adjust height to fit within the viewport */
overflow-y: auto; /* Enable scrolling within the sidebar if content is too long */
}
.stSidebar .st-expander {
background-color: #ffffff;
border-radius: 10px;
padding: 10px;
margin-bottom: 10px;
}
.stSidebar .stSlider {
margin-bottom: 20px;
}
.stSidebar .stSelectbox {
margin-bottom: 20px;
}
.stSidebar .stCheckbox {
margin-bottom: 20px;
}
</style>
""",
unsafe_allow_html=True,
)
# Container for the whole content with dynamic height
with st.container():
st.markdown("<p class='big-title'>SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking</p>", unsafe_allow_html=True)
st.markdown("""
<div style="text-align: center; margin-bottom: 20px;">
<p>
<a href="https://github.com/DAVID-NGUYEN-S16">Nam V. Nguyen</a>*,
<a href="https://github.com/xndien2004">Dien X. Tran</a>*,
Thanh T. Tran,
Anh T. Hoang,
Tai V. Duong,
Di T. Le,
Phuc-Lu Le
</p>
</div>
""", unsafe_allow_html=True)
# Sidebar: Global Settings
with st.sidebar.expander("⚙️ Settings", expanded=True):
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("QATC Model", [
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
])
bc_model_name = st.selectbox("Binary Classification Model", [
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
])
tc_model_name = st.selectbox("3-Class Classification Model", [
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
])
show_details = st.checkbox("Show Probability Details", value=False)
# Add CPU optimization settings
st.subheader("CPU Performance Settings")
num_threads = st.slider("Number of CPU Threads", 1, psutil.cpu_count(),
psutil.cpu_count(logical=False))
os.environ["OMP_NUM_THREADS"] = str(num_threads)
os.environ["MKL_NUM_THREADS"] = str(num_threads)
# Load models once and keep them in memory
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering, device=DEVICE)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True, device=DEVICE)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification, device=DEVICE)
st.session_state.models_loaded = True
# Store verification history
if 'history' not in st.session_state:
st.session_state.history = []
if 'latest_result' not in st.session_state:
st.session_state.latest_result = None
# Icons for results
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
# Tabs: Verify, History
tabs = st.tabs(["Verify", "History"])
# --- Tab Verify ---
with tabs[0]:
st.subheader("Verify a Claim")
# 2-column layout: input on the left, results on the right
col_input, col_result = st.columns([2, 1])
with col_input:
claim = st.text_area("Enter Claim", "Chiến tranh với Campuchia đã kết thúc trước khi Việt Nam thống nhất.")
context = st.text_area("Enter Context", "Sau khi thống nhất, Việt Nam tiếp tục gặp khó khăn do sự sụp đổ và tan rã của đồng minh Liên Xô cùng Khối phía Đông, các lệnh cấm vận của Hoa Kỳ, chiến tranh với Campuchia, biên giới giáp Trung Quốc và hậu quả của chính sách bao cấp sau nhiều năm áp dụng. Năm 1986, Đảng Cộng sản ban hành cải cách đổi mới, tạo điều kiện hình thành kinh tế thị trường và hội nhập sâu rộng. Cải cách đổi mới kết hợp cùng quy mô dân số lớn đưa Việt Nam trở thành một trong những nước đang phát triển có tốc độ tăng trưởng thuộc nhóm nhanh nhất thế giới, được coi là Hổ mới châu Á dù cho vẫn gặp phải những thách thức như tham nhũng, tội phạm gia tăng, ô nhiễm môi trường và phúc lợi xã hội chưa đầy đủ. Ngoài ra, giới bất đồng chính kiến, chính phủ một số nước phương Tây và các tổ chức theo dõi nhân quyền có quan điểm chỉ trích hồ sơ nhân quyền của Việt Nam liên quan đến các vấn đề tôn giáo, kiểm duyệt truyền thông, hạn chế hoạt động ủng hộ nhân quyền cùng các quyền tự do dân sự.")
verify_button = st.button("Verify", key="verify_button")
with col_result:
st.markdown("<h3>Verification Result</h3>", unsafe_allow_html=True)
if verify_button:
# Preprocess texts to improve tokenization speed
preprocessed_claim = preprocess_text(claim)
preprocessed_context = preprocess_text(context)
# Placeholder for displaying result/loading
with st.spinner("Verifying..."):
start_time = time.time()
# Clear memory before verification
gc.collect()
# Use the optimized verification function
result = perform_verification(
preprocessed_claim, preprocessed_context,
model_qatc, tokenizer_qatc,
model_tc, tokenizer_tc,
model_bc, tokenizer_bc,
tfidf_threshold, length_ratio_threshold
)
total_time = time.time() - start_time
# Format details if needed
details = ""
if show_details:
details = f"""
3-Class Probability: {result['prob3class'].item():.2f}
3-Class Predicted Label: {['NEI', 'SUPPORTED', 'REFUTED'][result['pred_tc']]}
2-Class Probability: {result['prob2class'].item():.2f}
2-Class Predicted Label: {['SUPPORTED', 'REFUTED'][result['pred_bc']] if isinstance(result['pred_bc'], int) and result['pred_tc'] != 0 else 'Not used'}
"""
st.session_state.latest_result = {
"claim": claim,
"evidence": result['evidence'],
"verdict": result['verdict'],
"evidence_time": result['evidence_time'],
"verdict_time": result['verdict_time'],
"total_time": total_time,
"details": details,
"qatc_model": qatc_model_name,
"bc_model": bc_model_name,
"tc_model": tc_model_name
}
# Add new result to history
st.session_state.history.append(st.session_state.latest_result)
# Clear memory after processing
gc.collect()
# Display the result after verification
res = st.session_state.latest_result
st.markdown(f"""
<div class='result-box'>
<p><strong>Claim:</strong> {res['claim']}</p>
<p><strong>Evidence:</strong> {res['evidence']}</p>
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p>
<p><strong>Evidence Inference Time:</strong> {res['evidence_time']:.2f} seconds</p>
<p><strong>Verdict Inference Time:</strong> {res['verdict_time']:.2f} seconds</p>
<p><strong>Total Execution Time:</strong> {res['total_time']:.2f} seconds</p>
</div>
""", unsafe_allow_html=True)
# Download Verification Result Feature
result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}"
st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain")
else:
st.info("No verification result yet.")
# --- Tab History ---
with tabs[1]:
st.subheader("Verification History")
if st.session_state.history:
# Convert history to DataFrame for easy download
history_df = pd.DataFrame(st.session_state.history)
st.download_button(
label="Download Full History",
data=history_df.to_csv(index=False).encode('utf-8'),
file_name="verification_history.csv",
mime="text/csv",
)
for idx, record in enumerate(reversed(st.session_state.history), 1):
st.markdown(f"**{idx}. Claim:** {record['claim']} \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
else:
st.write("No verification history yet.") |