File size: 17,158 Bytes
f4d5aab
 
 
 
 
 
 
65d40d5
 
7725101
 
 
 
 
f4d5aab
7725101
 
 
 
042e3b2
 
 
7725101
f4d5aab
99fbeb9
 
 
 
f4d5aab
ee53ecb
35de67c
99fbeb9
7725101
 
 
 
 
 
 
 
 
 
 
99fbeb9
7725101
f4d5aab
 
99fbeb9
 
 
 
 
 
7725101
 
 
 
99fbeb9
 
 
7725101
99fbeb9
 
 
7725101
 
 
 
 
 
 
 
99fbeb9
7725101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99fbeb9
 
 
 
 
7725101
99fbeb9
 
 
 
 
 
 
 
7725101
99fbeb9
 
 
 
 
 
15b8bdf
99fbeb9
15b8bdf
99fbeb9
 
 
8a052ba
f4d5aab
 
e58af06
3f899a4
4d37b8b
 
f4d5aab
3f899a4
 
 
 
 
 
 
fb62d04
3f899a4
 
 
6a1dd5e
3f899a4
b742d44
3f899a4
 
 
 
b742d44
3f899a4
 
 
 
b742d44
3f899a4
 
 
 
b742d44
5d4fa7e
3f899a4
 
 
 
5d4fa7e
3f899a4
 
 
 
b742d44
 
3f899a4
 
b742d44
3f899a4
 
 
 
b742d44
3f899a4
 
 
 
 
 
 
b742d44
4d37b8b
3f899a4
 
 
 
 
 
 
b742d44
3f899a4
 
 
 
b742d44
3f899a4
 
 
 
 
 
 
 
b742d44
3f899a4
 
 
 
 
 
f345548
3f899a4
 
 
 
 
4d37b8b
f4d5aab
4d37b8b
 
 
f4d5aab
4d37b8b
4ebd212
65d40d5
5682e8a
 
 
620ddec
 
5682e8a
 
 
 
 
620ddec
5682e8a
 
f0d09f3
 
4ebd212
 
 
 
8a052ba
 
 
 
 
4ebd212
12ccc3e
 
a48f89a
 
8a052ba
 
 
f0d09f3
12ccc3e
 
a48f89a
 
8a052ba
 
 
4d37b8b
7725101
 
 
 
 
 
 
f4d5aab
042e3b2
1faa78e
 
 
 
042e3b2
 
 
 
 
 
f4d5aab
f0d09f3
8a052ba
 
 
 
 
f0d09f3
7264a9c
 
f0d09f3
4d37b8b
f0d09f3
4d37b8b
 
8a052ba
4d37b8b
8a052ba
43449cb
 
4d37b8b
 
4ebd212
4d37b8b
 
99fbeb9
 
 
 
4d37b8b
5682e8a
99fbeb9
 
7725101
 
 
99fbeb9
 
 
 
 
 
 
 
 
 
 
 
a4443df
5701a4f
 
5d4fa7e
99fbeb9
5d4fa7e
16ee256
5701a4f
99fbeb9
a4443df
 
99fbeb9
 
 
 
7264a9c
 
 
 
 
a4443df
4d37b8b
99fbeb9
d8e959c
 
7725101
 
4d37b8b
4fdfda4
 
 
 
 
 
3f899a4
4fdfda4
 
99fbeb9
4fdfda4
 
99fbeb9
4fdfda4
 
 
8a052ba
4d37b8b
8a052ba
4d37b8b
f0d09f3
4ebd212
8a052ba
65d40d5
 
 
 
 
 
 
 
8a052ba
4ebd212
8a052ba
4af1026
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time
import pandas as pd
import os
import psutil
import gc
import threading
from queue import Queue

# Set environment variables to optimize CPU performance
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False))

# Set device globally
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Load models with caching and CPU optimization
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False, device=None):
    if device is None:
        device = "cuda" if torch.cuda.is_available() else "cpu"
    
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
    model.eval()
    
    # CPU-specific optimizations
    if device == "cpu":
        # Use torch's quantization for CPU inference speed boost
        try:
            import torch.quantization
            # Quantize the model to INT8
            model = torch.quantization.quantize_dynamic(
                model, {torch.nn.Linear}, dtype=torch.qint8
            )
        except Exception as e:
            st.warning(f"Quantization failed, using default model: {e}")
    
    model.to(device)
    return tokenizer, model

# Pre-process text function to avoid doing it multiple times
@st.cache_data
def preprocess_text(text):
    # Add any text cleaning or normalization here
    return text.strip()

# Function to extract evidence in a separate thread for better CPU utilization
def extract_evidence_threaded(queue, claim, context, model_qatc, tokenizer_qatc, device, 
                             tfidf_threshold, length_ratio_threshold):
    start_time = time.time()
    with torch.no_grad():
        evidence = extract_evidence_tfidf_qatc(
            claim, context, model_qatc, tokenizer_qatc,
            device,
            confidence_threshold=tfidf_threshold,
            length_ratio_threshold=length_ratio_threshold
        )
    evidence_time = time.time() - start_time
    queue.put((evidence, evidence_time))

# Function to classify in a separate thread
def classify_claim_threaded(queue, claim, evidence, model, tokenizer, device):
    with torch.no_grad():
        result = classify_claim(claim, evidence, model, tokenizer, device)
    queue.put(result)

# Optimized function for evidence extraction and classification with better CPU performance
def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc, 
                          model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold):
    # Use thread for evidence extraction to allow garbage collection in between
    evidence_queue = Queue()
    evidence_thread = threading.Thread(
        target=extract_evidence_threaded,
        args=(evidence_queue, claim, context, model_qatc, tokenizer_qatc, DEVICE,
              tfidf_threshold, length_ratio_threshold)
    )
    evidence_thread.start()
    evidence_thread.join()
    evidence, evidence_time = evidence_queue.get()
    
    # Explicit garbage collection after evidence extraction
    gc.collect()
    
    # Classify the claim
    verdict_start_time = time.time()
    with torch.no_grad():
        prob3class, pred_tc = classify_claim(
            claim, evidence, model_tc, tokenizer_tc, DEVICE
        )
        
        # Only run binary classifier if needed
        prob2class, pred_bc = 0, 0
        if pred_tc != 0:
            prob2class, pred_bc = classify_claim(
                claim, evidence, model_bc, tokenizer_bc, DEVICE
            )
            verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
        else:
            verdict = "NEI"
            
    verdict_time = time.time() - verdict_start_time

    return {
        "evidence": evidence,
        "verdict": verdict,
        "evidence_time": evidence_time,
        "verdict_time": verdict_time,
        "prob3class": prob3class.item() if isinstance(prob3class, torch.Tensor) else prob3class,
        "pred_tc": pred_tc,
        "prob2class": prob2class.item() if isinstance(prob2class, torch.Tensor) else prob2class,
        "pred_bc": pred_bc
    }

# Set up page configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")

# Custom CSS: fixed header and tabs, dynamic height, result box formatting
# Custom CSS: fixed header and tabs, dynamic height, result box formatting
st.markdown(
    """
    <style>
    html, body {
        height: 100%;
        margin: 0;
        overflow: hidden;
    }
    .main-container {
        height: calc(100vh - 55px); /* Browser height - 55px */
        overflow-y: auto;
        padding: 20px;
    }
    .big-title {
        font-size: 36px !important;
        font-weight: bold;
        color: var(--primary-color);
        text-align: center;
        margin-top: 20px;
        position: sticky; /* Pin the header */
        top: 0;
        background-color: var(--background-color); /* Ensure the header covers content when scrolling */
        z-index: 100; /* Ensure it's above other content */
    }
    .sub-title {
        font-size: 20px;
        color: var(--text-color);
        text-align: center;
        margin-bottom: 20px;
    }
    .stButton>button {
        background-color: var(--primary-color);
        color: red; 
        font-size: 16px;
        width: 100%;
        border-radius: 8px;
        padding: 10px;
        border: 2px solid red;
    }
    .stTextArea textarea {
        font-size: 16px;
        min-height: 120px;
        background-color: var(--secondary-background-color);
        color: var(--text-color);
    }
    .result-box {
        background-color: var(--secondary-background-color);
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
        margin-top: 20px;
        color: var(--text-color);
    }
    .verdict {
        font-size: 24px;
        font-weight: bold;
        margin: 0;
        display: flex;
        align-items: center;
        color: var(--text-color);
    }
    .verdict-icon {
        margin-right: 10px;
    }
    /* Fix the tabs at the top */
    div[data-baseweb="tab-list"] {
        position: sticky;
        top: 55px; /* Height of the header */
        background-color: var(--background-color);
        z-index: 99;
    }
    /* Fix the sidebar content */
    .stSidebar .sidebar-content {
        background-color: var(--secondary-background-color);
        padding: 20px;
        border-radius: 10px;
        position: sticky;
        top: 55px; /* Height of the header */
        height: calc(100vh - 75px); /* Adjust height to fit within the viewport */
        overflow-y: auto; /* Enable scrolling within the sidebar if content is too long */
    }
    .stSidebar .st-expander {
        background-color: var(--background-color);
        border-radius: 10px;
        padding: 10px;
        margin-bottom: 10px;
    }
    .stSidebar .stSlider {
        margin-bottom: 20px;
    }   
    .stSidebar .stSelectbox {
        margin-bottom: 20px;
    }
    .stSidebar .stCheckbox {
        margin-bottom: 20px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

# Container for the whole content with dynamic height
with st.container():
    st.markdown("<p class='big-title'>SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking</p>", unsafe_allow_html=True)
    st.markdown("""
        <div style="text-align: center; margin-bottom: 20px;">
            <p>
                <a href="https://github.com/DAVID-NGUYEN-S16">Nam V. Nguyen</a>*, 
                <a href="https://github.com/xndien2004">Dien X. Tran</a>*, 
                Thanh T. Tran, 
                Anh T. Hoang, 
                Tai V. Duong, 
                Di T. Le, 
                Phuc-Lu Le
            </p> 
        </div>
    """, unsafe_allow_html=True)

    # Sidebar: Global Settings
    with st.sidebar.expander("⚙️ Settings", expanded=True):
        tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
        length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
        qatc_model_name = st.selectbox("QATC Model", [
            "SemViQA/qatc-infoxlm-viwikifc",
            "SemViQA/qatc-infoxlm-isedsc01",
            "SemViQA/qatc-vimrc-viwikifc",
            "SemViQA/qatc-vimrc-isedsc01"
        ])
        bc_model_name = st.selectbox("Binary Classification Model", [
            "SemViQA/bc-xlmr-viwikifc",
            "SemViQA/bc-xlmr-isedsc01",
            "SemViQA/bc-infoxlm-viwikifc",
            "SemViQA/bc-infoxlm-isedsc01",
            "SemViQA/bc-erniem-viwikifc",
            "SemViQA/bc-erniem-isedsc01"
        ])
        tc_model_name = st.selectbox("3-Class Classification Model", [
            "SemViQA/tc-xlmr-viwikifc",
            "SemViQA/tc-xlmr-isedsc01",
            "SemViQA/tc-infoxlm-viwikifc",
            "SemViQA/tc-infoxlm-isedsc01",
            "SemViQA/tc-erniem-viwikifc",
            "SemViQA/tc-erniem-isedsc01"
        ])
        show_details = st.checkbox("Show Probability Details", value=False)
        
        # Add CPU optimization settings
        st.subheader("CPU Performance Settings")
        num_threads = st.slider("Number of CPU Threads", 1, psutil.cpu_count(), 
                               psutil.cpu_count(logical=False))
        os.environ["OMP_NUM_THREADS"] = str(num_threads)
        os.environ["MKL_NUM_THREADS"] = str(num_threads)

    # Load models once and keep them in memory
    tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering, device=DEVICE)
    tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True, device=DEVICE)
    tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification, device=DEVICE)
    st.session_state.models_loaded = True

    # Store verification history
    if 'history' not in st.session_state:
        st.session_state.history = []
    if 'latest_result' not in st.session_state:
        st.session_state.latest_result = None

    # Icons for results
    verdict_icons = {
        "SUPPORTED": "✅",
        "REFUTED": "❌",
        "NEI": "⚠️"
    }

    # Tabs: Verify, History
    tabs = st.tabs(["Verify", "History"])

    # --- Tab Verify ---
    with tabs[0]:
        st.subheader("Verify a Claim")
        # 2-column layout: input on the left, results on the right
        col_input, col_result = st.columns([2, 1])

        with col_input:
            claim = st.text_area("Enter Claim", "Chiến tranh với Campuchia đã kết thúc trước khi Việt Nam thống nhất.")
            context = st.text_area("Enter Context", "Sau khi thống nhất, Việt Nam tiếp tục gặp khó khăn do sự sụp đổ và tan rã của đồng minh Liên Xô cùng Khối phía Đông, các lệnh cấm vận của Hoa Kỳ, chiến tranh với Campuchia, biên giới giáp Trung Quốc và hậu quả của chính sách bao cấp sau nhiều năm áp dụng. Năm 1986, Đảng Cộng sản ban hành cải cách đổi mới, tạo điều kiện hình thành kinh tế thị trường và hội nhập sâu rộng. Cải cách đổi mới kết hợp cùng quy mô dân số lớn đưa Việt Nam trở thành một trong những nước đang phát triển có tốc độ tăng trưởng thuộc nhóm nhanh nhất thế giới, được coi là Hổ mới châu Á dù cho vẫn gặp phải những thách thức như tham nhũng, tội phạm gia tăng, ô nhiễm môi trường và phúc lợi xã hội chưa đầy đủ. Ngoài ra, giới bất đồng chính kiến, chính phủ một số nước phương Tây và các tổ chức theo dõi nhân quyền có quan điểm chỉ trích hồ sơ nhân quyền của Việt Nam liên quan đến các vấn đề tôn giáo, kiểm duyệt truyền thông, hạn chế hoạt động ủng hộ nhân quyền cùng các quyền tự do dân sự.")
            verify_button = st.button("Verify", key="verify_button")

        with col_result:
            st.markdown("<h3>Verification Result</h3>", unsafe_allow_html=True)
            if verify_button:
                # Preprocess texts to improve tokenization speed
                preprocessed_claim = preprocess_text(claim)
                preprocessed_context = preprocess_text(context)
                
                # Placeholder for displaying result/loading
                with st.spinner("Verifying..."): 
                    start_time = time.time()
                    
                    # Clear memory before verification
                    gc.collect()
                    
                    # Use the optimized verification function
                    result = perform_verification(
                        preprocessed_claim, preprocessed_context, 
                        model_qatc, tokenizer_qatc,
                        model_tc, tokenizer_tc,
                        model_bc, tokenizer_bc,
                        tfidf_threshold, length_ratio_threshold
                    )
                    
                    total_time = time.time() - start_time
                    
                    # Format details if needed
                    details = ""
                    if show_details:
                        details = f"""
                            3-Class Probability: {result['prob3class']:.2f}
                            3-Class Predicted Label: {['NEI', 'SUPPORTED', 'REFUTED'][result['pred_tc']]}
                            2-Class Probability: {result['prob2class']:.2f}
                            2-Class Predicted Label: {['SUPPORTED', 'REFUTED'][result['pred_bc']] if isinstance(result['pred_bc'], int) and result['pred_tc'] != 0 else 'Not used'}
                        """
                    
                    st.session_state.latest_result = {
                        "claim": claim,
                        "evidence": result['evidence'],
                        "verdict": result['verdict'],
                        "evidence_time": result['evidence_time'],
                        "verdict_time": result['verdict_time'],
                        "total_time": total_time,
                        "details": details,
                        "qatc_model": qatc_model_name,
                        "bc_model": bc_model_name,
                        "tc_model": tc_model_name
                    }

                    # Add new result to history
                    st.session_state.history.append(st.session_state.latest_result)

                    # Clear memory after processing
                    gc.collect()

                    # Display the result after verification
                    res = st.session_state.latest_result
                    st.markdown(f"""
                        <div class='result-box'>
                            <p><strong>Claim:</strong> {res['claim']}</p>
                            <p><strong>Evidence:</strong> {res['evidence']}</p>
                            <p class='verdict'><span class='verdict-icon'>{verdict_icons.get(res['verdict'], '')}</span>{res['verdict']}</p>
                            <p><strong>Evidence Inference Time:</strong> {res['evidence_time']:.2f} seconds</p>
                            <p><strong>Verdict Inference Time:</strong> {res['verdict_time']:.2f} seconds</p>
                            <p><strong>Total Execution Time:</strong> {res['total_time']:.2f} seconds</p>
                        </div>
                    """, unsafe_allow_html=True)
                    
                    # Download Verification Result Feature
                    result_text = f"Claim: {res['claim']}\nEvidence: {res['evidence']}\nVerdict: {res['verdict']}\nDetails: {res['details']}"
                    st.download_button("Download Result", data=result_text, file_name="verification_result.txt", mime="text/plain")
            else:
                st.info("No verification result yet.")

    # --- Tab History ---
    with tabs[1]:
        st.subheader("Verification History")
        if st.session_state.history:
            # Convert history to DataFrame for easy download
            history_df = pd.DataFrame(st.session_state.history)
            st.download_button(
                label="Download Full History",
                data=history_df.to_csv(index=False).encode('utf-8'),
                file_name="verification_history.csv",
                mime="text/csv",
            )
            for idx, record in enumerate(reversed(st.session_state.history), 1):
                st.markdown(f"**{idx}. Claim:** {record['claim']}  \n**Result:** {verdict_icons.get(record['verdict'], '')} {record['verdict']}")
        else:
            st.write("No verification history yet.")