Spaces:
Runtime error
Runtime error
File size: 1,895 Bytes
5804420 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import torchaudio
import torch
from fairseq import checkpoint_utils
import numpy as np
import tempfile
import os
# Verificar si CUDA est谩 disponible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Usando {device} para la clonaci贸n de voz")
# Cargar el modelo en GPU si est谩 disponible
models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(["https://dl.fbaipublicfiles.com/vits/model.pt"])
model = models[0].to(device)
model.eval()
def clone_voice(reference_audio, text):
# Convertir el audio de referencia a tensor
waveform, sample_rate = torchaudio.load(reference_audio.name)
# Normalizar el audio de referencia
waveform = waveform.mean(dim=0) # Convertir a mono
waveform = torchaudio.transforms.Resample(sample_rate, 22050)(waveform) # Asegurar 22.05 kHz
# Convertir el audio a tensor en la GPU si est谩 disponible
waveform = waveform.unsqueeze(0).to(device)
# Extraer la huella de voz del hablante
speaker_embedding = model.get_speaker_embedding(waveform)
# Generar la voz clonada
synthesized_waveform = model.synthesize(text, speaker_embedding)
# Pasar el audio generado a la CPU para guardarlo
synthesized_waveform = synthesized_waveform.cpu()
# Guardar temporalmente el audio generado
output_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
torchaudio.save(output_file.name, synthesized_waveform, 22050)
return output_file.name
# Crear interfaz Gradio
interface = gr.Interface(
fn=clone_voice,
inputs=[gr.Audio(type="file"), gr.Textbox(label="Texto a sintetizar")],
outputs=gr.Audio(label="Voz Clonada"),
title="Clonaci贸n de Voz con GPU",
description="Sube un audio de referencia y escribe un texto para clonarlo con aceleraci贸n en GPU (si est谩 disponible)."
)
interface.launch()
|