Spaces:
Runtime error
Runtime error
metadata v12
Browse files- app.py +23 -42
- metadata.csv +0 -0
- metadata.py +2 -2
app.py
CHANGED
@@ -7,21 +7,22 @@ import os
|
|
7 |
import pickle
|
8 |
from pathlib import Path
|
9 |
import gc
|
10 |
-
import requests
|
11 |
-
from io import BytesIO
|
12 |
|
13 |
-
#
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
-
if not HF_TOKEN:
|
16 |
-
raise ValueError("⚠️ Por favor, configura la variable de entorno HF_TOKEN para acceder al dataset privado")
|
17 |
|
18 |
# 📁 Directorio para embeddings
|
19 |
EMBEDDINGS_DIR = Path("embeddings")
|
20 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
21 |
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
|
22 |
|
23 |
-
# ✅ Cargar dataset desde
|
24 |
-
dataset = load_dataset(
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# 🔄 Preprocesar imagen para Facenet
|
27 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
@@ -40,38 +41,21 @@ def build_database():
|
|
40 |
database = []
|
41 |
batch_size = 10
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Debug: Print dataset structure
|
47 |
-
print("Dataset structure:", train_dataset.features)
|
48 |
-
print("First item structure:", train_dataset[0])
|
49 |
-
print("Dataset type:", type(train_dataset))
|
50 |
-
print("Dataset item type:", type(train_dataset[0]))
|
51 |
-
|
52 |
-
for i in range(0, len(train_dataset), batch_size):
|
53 |
-
batch = train_dataset[i:i + batch_size]
|
54 |
-
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(train_dataset) + batch_size - 1) // batch_size}")
|
55 |
|
56 |
for j, item in enumerate(batch):
|
57 |
try:
|
58 |
-
|
59 |
-
|
60 |
-
print(f"Debug - Item content: {item}")
|
61 |
-
|
62 |
-
# Get the image URL
|
63 |
-
image_url = item["image"]
|
64 |
-
if not isinstance(image_url, str) or not image_url.startswith("http"):
|
65 |
-
print(f"⚠️ Skipping item {i+j} - Invalid URL format")
|
66 |
continue
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# Ensure image is in RGB mode
|
74 |
-
img = img.convert("RGB")
|
75 |
img_processed = preprocess_image(img)
|
76 |
embedding = DeepFace.represent(
|
77 |
img_path=img_processed,
|
@@ -80,19 +64,16 @@ def build_database():
|
|
80 |
)[0]["embedding"]
|
81 |
|
82 |
database.append((f"image_{i+j}", img, embedding))
|
83 |
-
print(f"✅ Procesada imagen {i+j+1}/{len(
|
84 |
|
85 |
del img_processed
|
86 |
gc.collect()
|
87 |
|
88 |
except Exception as e:
|
89 |
-
print(f"❌
|
90 |
-
print(f"Error details: {type(e).__name__}")
|
91 |
-
import traceback
|
92 |
-
print(traceback.format_exc())
|
93 |
continue
|
94 |
|
95 |
-
#
|
96 |
if database:
|
97 |
print("💾 Guardando progreso...")
|
98 |
with open(EMBEDDINGS_FILE, 'wb') as f:
|
@@ -135,7 +116,7 @@ def find_similar_faces(uploaded_image: Image.Image):
|
|
135 |
|
136 |
return gallery_items, text_summary
|
137 |
|
138 |
-
# ⚙️
|
139 |
print("🚀 Iniciando aplicación...")
|
140 |
database = build_database()
|
141 |
print(f"✅ Base de datos cargada con {len(database)} imágenes")
|
|
|
7 |
import pickle
|
8 |
from pathlib import Path
|
9 |
import gc
|
|
|
|
|
10 |
|
11 |
+
# 🔐 Token automático (si es necesario)
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
13 |
|
14 |
# 📁 Directorio para embeddings
|
15 |
EMBEDDINGS_DIR = Path("embeddings")
|
16 |
EMBEDDINGS_DIR.mkdir(exist_ok=True)
|
17 |
EMBEDDINGS_FILE = EMBEDDINGS_DIR / "embeddings.pkl"
|
18 |
|
19 |
+
# ✅ Cargar dataset directamente desde Hugging Face Hub
|
20 |
+
dataset = load_dataset(
|
21 |
+
path="Segizu/facial-recognition",
|
22 |
+
data_files="metadata.csv",
|
23 |
+
token=HF_TOKEN
|
24 |
+
)
|
25 |
+
dataset = dataset["train"].cast_column("image", HfImage())
|
26 |
|
27 |
# 🔄 Preprocesar imagen para Facenet
|
28 |
def preprocess_image(img: Image.Image) -> np.ndarray:
|
|
|
41 |
database = []
|
42 |
batch_size = 10
|
43 |
|
44 |
+
for i in range(0, len(dataset), batch_size):
|
45 |
+
batch = dataset[i:i + batch_size]
|
46 |
+
print(f"📦 Procesando lote {i // batch_size + 1}/{(len(dataset) + batch_size - 1) // batch_size}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
for j, item in enumerate(batch):
|
49 |
try:
|
50 |
+
if not isinstance(item, dict) or "image" not in item:
|
51 |
+
print(f"⚠️ Saltando item {i+j} - estructura inválida: {item}")
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
continue
|
53 |
+
|
54 |
+
img = item["image"]
|
55 |
+
if not isinstance(img, Image.Image):
|
56 |
+
print(f"⚠️ Saltando item {i+j} - no es imagen: {type(img)}")
|
57 |
+
continue
|
58 |
+
|
|
|
|
|
59 |
img_processed = preprocess_image(img)
|
60 |
embedding = DeepFace.represent(
|
61 |
img_path=img_processed,
|
|
|
64 |
)[0]["embedding"]
|
65 |
|
66 |
database.append((f"image_{i+j}", img, embedding))
|
67 |
+
print(f"✅ Procesada imagen {i+j+1}/{len(dataset)}")
|
68 |
|
69 |
del img_processed
|
70 |
gc.collect()
|
71 |
|
72 |
except Exception as e:
|
73 |
+
print(f"❌ Error al procesar imagen {i+j}: {str(e)}")
|
|
|
|
|
|
|
74 |
continue
|
75 |
|
76 |
+
# Guardar después de cada lote
|
77 |
if database:
|
78 |
print("💾 Guardando progreso...")
|
79 |
with open(EMBEDDINGS_FILE, 'wb') as f:
|
|
|
116 |
|
117 |
return gallery_items, text_summary
|
118 |
|
119 |
+
# ⚙️ Iniciar la aplicación
|
120 |
print("🚀 Iniciando aplicación...")
|
121 |
database = build_database()
|
122 |
print(f"✅ Base de datos cargada con {len(database)} imágenes")
|
metadata.csv
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
metadata.py
CHANGED
@@ -2,14 +2,14 @@ from huggingface_hub import HfApi
|
|
2 |
import csv
|
3 |
import os
|
4 |
|
5 |
-
HF_TOKEN = os.getenv("HF_TOKEN") or "
|
6 |
repo_id = "Segizu/facial-recognition"
|
7 |
|
8 |
api = HfApi()
|
9 |
files = api.list_repo_files(repo_id=repo_id, repo_type="dataset", token=HF_TOKEN)
|
10 |
|
11 |
# Generar URLs completas
|
12 |
-
base_url = f"
|
13 |
image_urls = [base_url + f for f in files if f.lower().endswith(".jpg")]
|
14 |
|
15 |
# Escribir nuevo metadata.csv
|
|
|
2 |
import csv
|
3 |
import os
|
4 |
|
5 |
+
HF_TOKEN = os.getenv("HF_TOKEN") or ""
|
6 |
repo_id = "Segizu/facial-recognition"
|
7 |
|
8 |
api = HfApi()
|
9 |
files = api.list_repo_files(repo_id=repo_id, repo_type="dataset", token=HF_TOKEN)
|
10 |
|
11 |
# Generar URLs completas
|
12 |
+
base_url = f""
|
13 |
image_urls = [base_url + f for f in files if f.lower().endswith(".jpg")]
|
14 |
|
15 |
# Escribir nuevo metadata.csv
|