Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
import spaces
|
6 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
7 |
import torch
|
8 |
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"
|
|
|
11 |
|
12 |
-
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
pipe = pipe.to(device)
|
22 |
|
23 |
MAX_SEED = np.iinfo(np.int32).max
|
24 |
MAX_IMAGE_SIZE = 1024
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
@spaces.GPU(duration=65)
|
27 |
def infer(
|
28 |
prompt,
|
@@ -38,8 +45,13 @@ def infer(
|
|
38 |
if randomize_seed:
|
39 |
seed = random.randint(0, MAX_SEED)
|
40 |
|
41 |
-
generator = torch.Generator().manual_seed(seed)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
43 |
image = pipe(
|
44 |
prompt=prompt,
|
45 |
negative_prompt=negative_prompt,
|
@@ -52,9 +64,9 @@ def infer(
|
|
52 |
|
53 |
return image, seed
|
54 |
|
55 |
-
|
56 |
examples = [
|
57 |
-
|
58 |
]
|
59 |
|
60 |
css = """
|
@@ -76,18 +88,14 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
placeholder="Enter your prompt",
|
77 |
container=False,
|
78 |
)
|
79 |
-
|
80 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
-
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
85 |
negative_prompt = gr.Text(
|
86 |
label="Negative prompt",
|
87 |
max_lines=1,
|
88 |
placeholder="Enter a negative prompt",
|
89 |
)
|
90 |
-
|
91 |
seed = gr.Slider(
|
92 |
label="Seed",
|
93 |
minimum=0,
|
@@ -95,18 +103,15 @@ with gr.Blocks(css=css) as demo:
|
|
95 |
step=1,
|
96 |
value=0,
|
97 |
)
|
98 |
-
|
99 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
100 |
-
|
101 |
with gr.Row():
|
102 |
width = gr.Slider(
|
103 |
label="Width",
|
104 |
minimum=512,
|
105 |
maximum=MAX_IMAGE_SIZE,
|
106 |
step=32,
|
107 |
-
value=1024,
|
108 |
)
|
109 |
-
|
110 |
height = gr.Slider(
|
111 |
label="Height",
|
112 |
minimum=512,
|
@@ -114,7 +119,6 @@ with gr.Blocks(css=css) as demo:
|
|
114 |
step=32,
|
115 |
value=1024,
|
116 |
)
|
117 |
-
|
118 |
with gr.Row():
|
119 |
guidance_scale = gr.Slider(
|
120 |
label="Guidance scale",
|
@@ -123,15 +127,13 @@ with gr.Blocks(css=css) as demo:
|
|
123 |
step=0.1,
|
124 |
value=1.5,
|
125 |
)
|
126 |
-
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
maximum=50,
|
131 |
step=1,
|
132 |
-
value=8,
|
133 |
)
|
134 |
-
|
135 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
|
136 |
gr.on(
|
137 |
triggers=[run_button.click, prompt.submit],
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import spaces
|
5 |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
6 |
import torch
|
7 |
|
8 |
+
# Set device and model parameters
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"
|
11 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
12 |
|
13 |
+
# Load the pipeline with the specified torch_dtype and move it to the GPU
|
|
|
|
|
|
|
|
|
14 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
16 |
+
model_repo_id, subfolder="scheduler", shift=5
|
17 |
+
)
|
18 |
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
+
def truncate_text(text, max_tokens=77):
|
24 |
+
"""
|
25 |
+
Truncate the input text to a maximum of max_tokens using the pipeline's tokenizer.
|
26 |
+
"""
|
27 |
+
if text.strip() == "":
|
28 |
+
return text
|
29 |
+
tokens = pipe.tokenizer(text, truncation=True, max_length=max_tokens, add_special_tokens=True)
|
30 |
+
truncated_text = pipe.tokenizer.decode(tokens["input_ids"], skip_special_tokens=True)
|
31 |
+
return truncated_text
|
32 |
+
|
33 |
@spaces.GPU(duration=65)
|
34 |
def infer(
|
35 |
prompt,
|
|
|
45 |
if randomize_seed:
|
46 |
seed = random.randint(0, MAX_SEED)
|
47 |
|
48 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
49 |
|
50 |
+
# Explicitly truncate prompts to avoid CLIP token warnings.
|
51 |
+
prompt = truncate_text(prompt, max_tokens=77)
|
52 |
+
negative_prompt = truncate_text(negative_prompt, max_tokens=77) if negative_prompt.strip() else ""
|
53 |
+
|
54 |
+
# Generate the image using the truncated prompts.
|
55 |
image = pipe(
|
56 |
prompt=prompt,
|
57 |
negative_prompt=negative_prompt,
|
|
|
64 |
|
65 |
return image, seed
|
66 |
|
67 |
+
# UI Layout
|
68 |
examples = [
|
69 |
+
"A capybara wearing a suit holding a sign that reads Hello World",
|
70 |
]
|
71 |
|
72 |
css = """
|
|
|
88 |
placeholder="Enter your prompt",
|
89 |
container=False,
|
90 |
)
|
|
|
91 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
|
|
92 |
result = gr.Image(label="Result", show_label=False)
|
|
|
93 |
with gr.Accordion("Advanced Settings", open=False):
|
94 |
negative_prompt = gr.Text(
|
95 |
label="Negative prompt",
|
96 |
max_lines=1,
|
97 |
placeholder="Enter a negative prompt",
|
98 |
)
|
|
|
99 |
seed = gr.Slider(
|
100 |
label="Seed",
|
101 |
minimum=0,
|
|
|
103 |
step=1,
|
104 |
value=0,
|
105 |
)
|
|
|
106 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
107 |
with gr.Row():
|
108 |
width = gr.Slider(
|
109 |
label="Width",
|
110 |
minimum=512,
|
111 |
maximum=MAX_IMAGE_SIZE,
|
112 |
step=32,
|
113 |
+
value=1024,
|
114 |
)
|
|
|
115 |
height = gr.Slider(
|
116 |
label="Height",
|
117 |
minimum=512,
|
|
|
119 |
step=32,
|
120 |
value=1024,
|
121 |
)
|
|
|
122 |
with gr.Row():
|
123 |
guidance_scale = gr.Slider(
|
124 |
label="Guidance scale",
|
|
|
127 |
step=0.1,
|
128 |
value=1.5,
|
129 |
)
|
|
|
130 |
num_inference_steps = gr.Slider(
|
131 |
label="Number of inference steps",
|
132 |
minimum=1,
|
133 |
maximum=50,
|
134 |
step=1,
|
135 |
+
value=8,
|
136 |
)
|
|
|
137 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
|
138 |
gr.on(
|
139 |
triggers=[run_button.click, prompt.submit],
|