Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
import spaces
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
11 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
12 |
|
13 |
-
|
14 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
15 |
-
|
16 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
pipe = pipe.to(device)
|
18 |
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
@spaces.GPU(duration=65)
|
23 |
def infer(
|
24 |
prompt,
|
@@ -31,11 +39,16 @@ def infer(
|
|
31 |
num_inference_steps=40,
|
32 |
progress=gr.Progress(track_tqdm=True),
|
33 |
):
|
|
|
34 |
if randomize_seed:
|
35 |
seed = random.randint(0, MAX_SEED)
|
|
|
36 |
|
37 |
-
|
|
|
|
|
38 |
|
|
|
39 |
image = pipe(
|
40 |
prompt=prompt,
|
41 |
negative_prompt=negative_prompt,
|
@@ -44,13 +57,14 @@ def infer(
|
|
44 |
width=width,
|
45 |
height=height,
|
46 |
generator=generator,
|
|
|
47 |
).images[0]
|
48 |
|
49 |
return image, seed
|
50 |
|
51 |
-
|
52 |
examples = [
|
53 |
-
|
54 |
]
|
55 |
|
56 |
css = """
|
@@ -63,7 +77,7 @@ css = """
|
|
63 |
with gr.Blocks(css=css) as demo:
|
64 |
with gr.Column(elem_id="col-container"):
|
65 |
gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)")
|
66 |
-
gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3
|
67 |
with gr.Row():
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
@@ -72,11 +86,8 @@ with gr.Blocks(css=css) as demo:
|
|
72 |
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
-
|
76 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
77 |
-
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
negative_prompt = gr.Text(
|
82 |
label="Negative prompt",
|
@@ -84,7 +95,6 @@ with gr.Blocks(css=css) as demo:
|
|
84 |
placeholder="Enter a negative prompt",
|
85 |
visible=False,
|
86 |
)
|
87 |
-
|
88 |
seed = gr.Slider(
|
89 |
label="Seed",
|
90 |
minimum=0,
|
@@ -92,9 +102,7 @@ with gr.Blocks(css=css) as demo:
|
|
92 |
step=1,
|
93 |
value=0,
|
94 |
)
|
95 |
-
|
96 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
97 |
-
|
98 |
with gr.Row():
|
99 |
width = gr.Slider(
|
100 |
label="Width",
|
@@ -103,7 +111,6 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
step=32,
|
104 |
value=1024,
|
105 |
)
|
106 |
-
|
107 |
height = gr.Slider(
|
108 |
label="Height",
|
109 |
minimum=512,
|
@@ -111,7 +118,6 @@ with gr.Blocks(css=css) as demo:
|
|
111 |
step=32,
|
112 |
value=1024,
|
113 |
)
|
114 |
-
|
115 |
with gr.Row():
|
116 |
guidance_scale = gr.Slider(
|
117 |
label="Guidance scale",
|
@@ -120,7 +126,6 @@ with gr.Blocks(css=css) as demo:
|
|
120 |
step=0.1,
|
121 |
value=4.5,
|
122 |
)
|
123 |
-
|
124 |
num_inference_steps = gr.Slider(
|
125 |
label="Number of inference steps",
|
126 |
minimum=1,
|
@@ -128,7 +133,6 @@ with gr.Blocks(css=css) as demo:
|
|
128 |
step=1,
|
129 |
value=40,
|
130 |
)
|
131 |
-
|
132 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
|
133 |
gr.on(
|
134 |
triggers=[run_button.click, prompt.submit],
|
@@ -148,3 +152,4 @@ with gr.Blocks(css=css) as demo:
|
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import spaces
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
|
8 |
+
# Set device and model parameters
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
11 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
12 |
|
13 |
+
# Load the Stable Diffusion pipeline and move it to the appropriate device.
|
|
|
|
|
14 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
pipe = pipe.to(device)
|
16 |
|
17 |
+
# Maximum values as defined in your original code
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
+
# Define a helper function to truncate text to a maximum of 77 tokens.
|
22 |
+
def truncate_text(text, max_tokens=77):
|
23 |
+
if text.strip() == "":
|
24 |
+
return text
|
25 |
+
# Use the pipeline's tokenizer (CLIP tokenizer)
|
26 |
+
tokens = pipe.tokenizer(text, truncation=True, max_length=max_tokens, add_special_tokens=True)
|
27 |
+
truncated_text = pipe.tokenizer.decode(tokens["input_ids"], skip_special_tokens=True)
|
28 |
+
return truncated_text
|
29 |
+
|
30 |
@spaces.GPU(duration=65)
|
31 |
def infer(
|
32 |
prompt,
|
|
|
39 |
num_inference_steps=40,
|
40 |
progress=gr.Progress(track_tqdm=True),
|
41 |
):
|
42 |
+
# Optionally randomize seed
|
43 |
if randomize_seed:
|
44 |
seed = random.randint(0, MAX_SEED)
|
45 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
46 |
|
47 |
+
# Truncate both prompt and negative prompt to 77 tokens.
|
48 |
+
prompt = truncate_text(prompt, max_tokens=77)
|
49 |
+
negative_prompt = truncate_text(negative_prompt, max_tokens=77) if negative_prompt.strip() else ""
|
50 |
|
51 |
+
# Explicitly set pad_token_id to eos_token_id for open-end generation.
|
52 |
image = pipe(
|
53 |
prompt=prompt,
|
54 |
negative_prompt=negative_prompt,
|
|
|
57 |
width=width,
|
58 |
height=height,
|
59 |
generator=generator,
|
60 |
+
pad_token_id=pipe.tokenizer.eos_token_id,
|
61 |
).images[0]
|
62 |
|
63 |
return image, seed
|
64 |
|
65 |
+
# Example prompt for testing
|
66 |
examples = [
|
67 |
+
"A capybara wearing a suit holding a sign that reads Hello World",
|
68 |
]
|
69 |
|
70 |
css = """
|
|
|
77 |
with gr.Blocks(css=css) as demo:
|
78 |
with gr.Column(elem_id="col-container"):
|
79 |
gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)")
|
80 |
+
gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3.5) about the Stable Diffusion 3.5 series. Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), or [download model](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) to run locally with ComfyUI or diffusers.")
|
81 |
with gr.Row():
|
82 |
prompt = gr.Text(
|
83 |
label="Prompt",
|
|
|
86 |
placeholder="Enter your prompt",
|
87 |
container=False,
|
88 |
)
|
|
|
89 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
|
|
90 |
result = gr.Image(label="Result", show_label=False)
|
|
|
91 |
with gr.Accordion("Advanced Settings", open=False):
|
92 |
negative_prompt = gr.Text(
|
93 |
label="Negative prompt",
|
|
|
95 |
placeholder="Enter a negative prompt",
|
96 |
visible=False,
|
97 |
)
|
|
|
98 |
seed = gr.Slider(
|
99 |
label="Seed",
|
100 |
minimum=0,
|
|
|
102 |
step=1,
|
103 |
value=0,
|
104 |
)
|
|
|
105 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
106 |
with gr.Row():
|
107 |
width = gr.Slider(
|
108 |
label="Width",
|
|
|
111 |
step=32,
|
112 |
value=1024,
|
113 |
)
|
|
|
114 |
height = gr.Slider(
|
115 |
label="Height",
|
116 |
minimum=512,
|
|
|
118 |
step=32,
|
119 |
value=1024,
|
120 |
)
|
|
|
121 |
with gr.Row():
|
122 |
guidance_scale = gr.Slider(
|
123 |
label="Guidance scale",
|
|
|
126 |
step=0.1,
|
127 |
value=4.5,
|
128 |
)
|
|
|
129 |
num_inference_steps = gr.Slider(
|
130 |
label="Number of inference steps",
|
131 |
minimum=1,
|
|
|
133 |
step=1,
|
134 |
value=40,
|
135 |
)
|
|
|
136 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
|
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch()
|
155 |
+
|