import gradio as gr from transformers import pipeline # Load the larger text-generation model that uses GPU. # Here we use EleutherAI/gpt-j-6B: https://huggingface.co/EleutherAI/gpt-j-6B # Setting device=0 tells the pipeline to use GPU 0. generator = pipeline("text-generation", model="EleutherAI/gpt-j-6B", device=0) def expand_prompt(prompt, num_variants=5, max_length=100): """ Given a basic prompt, generate `num_variants` expanded prompts using GPT-J-6B. """ outputs = generator(prompt, max_length=max_length, num_return_sequences=num_variants, do_sample=True) expanded = [out["generated_text"].strip() for out in outputs] return "\n\n".join(expanded) iface = gr.Interface( fn=expand_prompt, inputs=gr.Textbox(lines=2, placeholder="Enter your basic prompt here...", label="Basic Prompt"), outputs=gr.Textbox(lines=10, label="Expanded Prompts"), title="Prompt Expansion Generator", description=( "Enter a basic prompt and receive 5 creative, expanded prompt variants. " "This tool leverages the EleutherAI/gpt-j-6B model on an A100 GPU for fast, expressive prompt expansion. " "Simply copy the output for use with your downstream image-generation pipeline." ) ) if __name__ == "__main__": iface.launch()