File size: 1,782 Bytes
368407f
 
e94cd94
368407f
e94cd94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368407f
 
e94cd94
 
 
368407f
 
 
 
 
 
 
 
 
 
e94cd94
 
368407f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
from transformers import pipeline
import torch

# Global generator variable; we'll load it lazily.
generator = None

def get_generator():
    global generator
    if generator is None:
        try:
            # If GPU is available, load on GPU (device=0).
            if torch.cuda.is_available():
                generator = pipeline("text-generation", model="EleutherAI/gpt-j-6B", device=0)
            else:
                generator = pipeline("text-generation", model="EleutherAI/gpt-j-6B", device=-1)
        except Exception as e:
            # If any error occurs, fallback to CPU
            print("Error loading model on GPU, falling back to CPU:", e)
            generator = pipeline("text-generation", model="EleutherAI/gpt-j-6B", device=-1)
    return generator

def expand_prompt(prompt, num_variants=5, max_length=100):
    # Lazy load the model when a prompt is submitted.
    gen = get_generator()
    outputs = gen(prompt, max_length=max_length, num_return_sequences=num_variants, do_sample=True)
    expanded = [out["generated_text"].strip() for out in outputs]
    return "\n\n".join(expanded)

iface = gr.Interface(
    fn=expand_prompt,
    inputs=gr.Textbox(lines=2, placeholder="Enter your basic prompt here...", label="Basic Prompt"),
    outputs=gr.Textbox(lines=10, label="Expanded Prompts"),
    title="Prompt Expansion Generator",
    description=(
        "Enter a basic prompt and receive 5 creative, expanded prompt variants. "
        "This tool leverages the EleutherAI/gpt-j-6B model and defers loading it until the first prompt is received—"
        "letting ZeroGPU initialize properly. Simply copy the output for use with your downstream image-generation pipeline."
    )
)

if __name__ == "__main__":
    iface.launch()