Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,20 +8,55 @@ import os, json
|
|
8 |
from sys import argv
|
9 |
from vllm import LLM, SamplingParams
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def load_model_processor(model_path):
|
12 |
processor = AutoProcessor.from_pretrained(model_path)
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
limit_mm_per_prompt={"audio": 5},
|
17 |
-
)
|
18 |
-
return llm, processor
|
19 |
|
20 |
model_path1 = "Qwen/Qwen2-Audio-7B-Instruct" #argv[1]
|
21 |
model1, processor1 = load_model_processor(model_path1)
|
22 |
|
23 |
-
def response_to_audio_conv(conversation, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
26 |
audios = []
|
27 |
for message in conversation:
|
@@ -33,21 +68,15 @@ def response_to_audio_conv(conversation, model=None, processor=None, temperature
|
|
33 |
ele['audio_url'],
|
34 |
sr=processor.feature_extractor.sampling_rate)[0]
|
35 |
)
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
'audio': [(audio, 16000) for audio in audios]
|
46 |
-
}
|
47 |
-
}
|
48 |
-
|
49 |
-
output = model.generate([input], sampling_params=sampling_params)[0]
|
50 |
-
response = output.outputs[0].text
|
51 |
return response
|
52 |
|
53 |
def print_like_dislike(x: gr.LikeData):
|
|
|
8 |
from sys import argv
|
9 |
from vllm import LLM, SamplingParams
|
10 |
|
11 |
+
# def load_model_processor(model_path):
|
12 |
+
# processor = AutoProcessor.from_pretrained(model_path)
|
13 |
+
# llm = LLM(
|
14 |
+
# model=model_path, trust_remote_code=True, gpu_memory_utilization=0.8,
|
15 |
+
# enforce_eager=True, device = "cuda",
|
16 |
+
# limit_mm_per_prompt={"audio": 5},
|
17 |
+
# )
|
18 |
+
# return llm, processor
|
19 |
+
|
20 |
def load_model_processor(model_path):
|
21 |
processor = AutoProcessor.from_pretrained(model_path)
|
22 |
+
model = Qwen2AudioForConditionalGeneration.from_pretrained(model_path, device_map="auto")
|
23 |
+
model_name = model_path.split("/")[-1]
|
24 |
+
return model, processor, model_name
|
|
|
|
|
|
|
25 |
|
26 |
model_path1 = "Qwen/Qwen2-Audio-7B-Instruct" #argv[1]
|
27 |
model1, processor1 = load_model_processor(model_path1)
|
28 |
|
29 |
+
# def response_to_audio_conv(conversation, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,
|
30 |
+
# max_new_tokens = 2048):
|
31 |
+
# text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
32 |
+
# audios = []
|
33 |
+
# for message in conversation:
|
34 |
+
# if isinstance(message["content"], list):
|
35 |
+
# for ele in message["content"]:
|
36 |
+
# if ele["type"] == "audio":
|
37 |
+
# if ele['audio_url'] != None:
|
38 |
+
# audios.append(librosa.load(
|
39 |
+
# ele['audio_url'],
|
40 |
+
# sr=processor.feature_extractor.sampling_rate)[0]
|
41 |
+
# )
|
42 |
+
|
43 |
+
# sampling_params = SamplingParams(
|
44 |
+
# temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20,
|
45 |
+
# stop_token_ids=[],
|
46 |
+
# )
|
47 |
+
|
48 |
+
# input = {
|
49 |
+
# 'prompt': text,
|
50 |
+
# 'multi_modal_data': {
|
51 |
+
# 'audio': [(audio, 16000) for audio in audios]
|
52 |
+
# }
|
53 |
+
# }
|
54 |
+
|
55 |
+
# output = model.generate([input], sampling_params=sampling_params)[0]
|
56 |
+
# response = output.outputs[0].text
|
57 |
+
# return response
|
58 |
+
|
59 |
+
def response_to_audio_conv(conversation, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9,max_new_tokens = 2048):
|
60 |
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
|
61 |
audios = []
|
62 |
for message in conversation:
|
|
|
68 |
ele['audio_url'],
|
69 |
sr=processor.feature_extractor.sampling_rate)[0]
|
70 |
)
|
71 |
+
if audios != []:
|
72 |
+
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True,sampling_rate=16000)
|
73 |
+
else:
|
74 |
+
inputs = processor(text=text, return_tensors="pt", padding=True)
|
75 |
+
inputs.input_ids = inputs.input_ids.to("cuda")
|
76 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items() if v is not None}
|
77 |
+
generate_ids = model.generate(**inputs, max_new_tokens=2048, temperature = 0.3, do_sample=True)
|
78 |
+
generate_ids = generate_ids[:, inputs["input_ids"].size(1):]
|
79 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
return response
|
81 |
|
82 |
def print_like_dislike(x: gr.LikeData):
|