Saty01 commited on
Commit
3ed900a
Β·
verified Β·
1 Parent(s): 6a9ed07

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -23
README.md CHANGED
@@ -9,8 +9,7 @@ license: mit
9
  short_description: 'FactChecker: Fake News Detector'
10
  ---
11
 
12
- # <img src="build/logo.png" alt="FactChecker Logo" width="30" height="30"> FactChecker: Fake News Detection Web Application
13
-
14
 
15
  FactChecker is a web application that detects fake news using various machine learning models.
16
  The system analyzes text input and predicts whether the content is likely to be real or fake news,
@@ -49,16 +48,17 @@ providing confidence scores and visualizations to help users understand the resu
49
  - Regular expressions for text cleaning
50
 
51
  ## Project Structure
 
52
  FactChecker/
53
  β”œβ”€β”€ build/ # React build files(compiled frontend)
54
  β”‚ β”œβ”€β”€ static/
55
  β”‚ β”‚ β”œβ”€β”€ css/ # Compiled CSS
56
  β”‚ β”‚ └── js/ # Compiled JavaScript
57
- β”‚ β”œβ”€β”€ asset-manifest.json
58
  β”‚ β”œβ”€β”€ index.html # Main HTML file
59
- β”‚ β”œβ”€β”€ logo.ico
60
- β”‚ β”œβ”€β”€ logo.png
61
- β”‚ └── manifest.json
62
  β”œβ”€β”€ model_training/ # Model training materials
63
  β”‚ β”œβ”€β”€ visualizations/ # Generated visualization images
64
  β”‚ └── model_training.ipynb # Jupyter notebook for model training
@@ -67,33 +67,35 @@ FactChecker/
67
  β”‚ β”œβ”€β”€ lr_model.pkl # Logistic Regression model
68
  β”‚ β”œβ”€β”€ rf_model.pkl # Random Forest model
69
  β”‚ └── distilbert_model.pt # DistilBERT model
70
- β”œβ”€β”€ .gitattributes
71
  β”œβ”€β”€ Dockerfile # Docker configuration
72
- β”œβ”€β”€ README.md
73
  β”œβ”€β”€ app.py # Flask application
74
  └── requirements.txt # Python dependencies
 
75
 
76
- ### Steps
77
 
78
- #### For Backend:
79
  1. Clone the repository
80
- 2. Create a virtual environment and install the dependencies.
81
- 1. pip install -r requirements.txt
82
- 3. Download NLTK resources:
83
- 1. python -c "import nltk; nltk.download('punkt'); nltk.download('stopwords'); nltk.download('wordnet')"
84
- 4. Run the application
85
- 1. python app.py
86
 
87
  #### For Frontend:
88
- 1. Install dependencies:
89
- 1. npm install
90
- 3. Build the frontend:
91
- 1. npm run build
92
 
93
  #### Model Training
94
  To retrain the models:
95
  1. Upload the notebook in Google Colab.
96
  2. Download the ISOT(true.csv, fake.csv) datasets and upload it to the google drive.
97
- 3. Change the runtime type to ideally run GPU instance.
98
- 4. Activate the runtime.
99
- 5. Run the Cells.
 
 
9
  short_description: 'FactChecker: Fake News Detector'
10
  ---
11
 
12
+ # ![FactChecker Logo](build/logo.png) FactChecker: Fake News Detection Web Application
 
13
 
14
  FactChecker is a web application that detects fake news using various machine learning models.
15
  The system analyzes text input and predicts whether the content is likely to be real or fake news,
 
48
  - Regular expressions for text cleaning
49
 
50
  ## Project Structure
51
+ ```
52
  FactChecker/
53
  β”œβ”€β”€ build/ # React build files(compiled frontend)
54
  β”‚ β”œβ”€β”€ static/
55
  β”‚ β”‚ β”œβ”€β”€ css/ # Compiled CSS
56
  β”‚ β”‚ └── js/ # Compiled JavaScript
57
+ β”‚ β”œβ”€β”€ asset-manifest.json
58
  β”‚ β”œβ”€β”€ index.html # Main HTML file
59
+ β”‚ β”œβ”€β”€ logo.ico
60
+ β”‚ β”œβ”€β”€ logo.png
61
+ β”‚ └── manifest.json
62
  β”œβ”€β”€ model_training/ # Model training materials
63
  β”‚ β”œβ”€β”€ visualizations/ # Generated visualization images
64
  β”‚ └── model_training.ipynb # Jupyter notebook for model training
 
67
  β”‚ β”œβ”€β”€ lr_model.pkl # Logistic Regression model
68
  β”‚ β”œβ”€β”€ rf_model.pkl # Random Forest model
69
  β”‚ └── distilbert_model.pt # DistilBERT model
70
+ β”œβ”€β”€ .gitattributes
71
  β”œβ”€β”€ Dockerfile # Docker configuration
72
+ β”œβ”€β”€ README.md
73
  β”œβ”€β”€ app.py # Flask application
74
  └── requirements.txt # Python dependencies
75
+ ```
76
 
77
+ ## Steps
78
 
79
+ ### For Backend:
80
  1. Clone the repository
81
+ 2. Create a virtual environment and install the dependencies.
82
+ ```pip install -r requirements.txt```
83
+ 3. Download NLTK resources:
84
+ ```python -c "import nltk; nltk.download('punkt'); nltk.download('stopwords'); nltk.download('wordnet')"```
85
+ 4. Run the application
86
+ ```python app.py```
87
 
88
  #### For Frontend:
89
+ 1. Install dependencies:
90
+ ```npm install ```
91
+ 3. Build the frontend:
92
+ ```npm run build```
93
 
94
  #### Model Training
95
  To retrain the models:
96
  1. Upload the notebook in Google Colab.
97
  2. Download the ISOT(true.csv, fake.csv) datasets and upload it to the google drive.
98
+ 3. Set runtime type to GPU for optimal performance:
99
+ ```Go to Runtime β†’ Change runtime type β†’ GPU β†’ Save```
100
+ 4. Activate the runtime.
101
+ 5. Execute the notebook cells sequentially to retrain the models.