from transformers import DetrImageProcessor, DetrForObjectDetection import torch from PIL import Image import cv2 # Load model processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") def detect_thermal_anomalies(frame): image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] boxes = [] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): if score >= 0.9: boxes.append(box.tolist()) return boxes