DocRAG / app.py
Sarath0x8f's picture
Update app.py
2ee49a0 verified
raw
history blame
3.43 kB
from datetime import datetime
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_parse import LlamaParse
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
import os
from dotenv import load_dotenv
import gradio as gr
import base64
# Load environment variables
load_dotenv()
# Predefined model selection
selected_llm_model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
selected_embed_model_name = "BAAI/bge-small-en-v1.5"
vector_index = None
# Initialize the parser
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
file_extractor = {
'.pdf': parser,
'.docx': parser,
'.doc': parser,
'.txt': parser,
'.csv': parser,
'.xlsx': parser,
'.pptx': parser,
'.html': parser,
'.jpg': parser,
'.jpeg': parser,
'.png': parser,
'.webp': parser,
'.svg': parser,
}
# File processing function
def load_files(file_path: str):
try:
global vector_index
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
embed_model = HuggingFaceEmbedding(model_name=selected_embed_model_name)
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
print(f"Parsing done for {file_path}")
filename = os.path.basename(file_path)
return f"File upload status: {filename} is ready to write"
except Exception as e:
return f"An error occurred: {e}"
# Respond function
def respond(message, history):
try:
llm = HuggingFaceInferenceAPI(
model_name=selected_llm_model_name,
contextWindow=8192,
maxTokens=1024,
temperature=0.3,
topP=0.9,
frequencyPenalty=0.5,
presencePenalty=0.5,
token=os.getenv("TOKEN")
)
query_engine = vector_index.as_query_engine(llm=llm)
bot_message = query_engine.query(message)
print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n")
return f"{selected_llm_model_name}:\n{str(bot_message)}"
except Exception as e:
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
return "Please upload a file."
return f"An error occurred: {e}"
# UI Setup
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo:
gr.Markdown("# DocBot📄🤖")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(file_count="single", type='filepath', label="Upload document")
btn = gr.Button("Submit", variant='primary')
clear = gr.ClearButton()
output = gr.Text(label='File upload status')
with gr.Column(scale=3):
gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=500),
theme="soft",
show_progress='full',
textbox=gr.Textbox(placeholder="Ask me questions on the uploaded document!", container=False)
)
# Set up Gradio interactions
btn.click(fn=load_files, inputs=file_input, outputs=output)
clear.click(lambda: [None] * 2, outputs=[file_input, output])
# Launch the demo
if __name__ == "__main__":
demo.launch()