Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load the Hugging Face pipelines
|
5 |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")
|
@@ -15,6 +20,7 @@ st.markdown(
|
|
15 |
This app uses Hugging Face models to detect the topics and intent of customer feedback
|
16 |
and determine the sentiment (positive or negative) for each relevant category.
|
17 |
A single feedback may belong to multiple categories, such as Pricing, Feature, and Customer Service.
|
|
|
18 |
"""
|
19 |
)
|
20 |
|
@@ -22,7 +28,8 @@ st.markdown(
|
|
22 |
feedback_input = st.text_area(
|
23 |
"Enter customer feedback:",
|
24 |
placeholder="Type your feedback here...",
|
25 |
-
height=200
|
|
|
26 |
)
|
27 |
|
28 |
# Confidence threshold for zero-shot classification
|
@@ -32,7 +39,7 @@ threshold = st.slider(
|
|
32 |
max_value=1.0,
|
33 |
value=0.2,
|
34 |
step=0.05,
|
35 |
-
help="Categories with scores above this threshold will be displayed."
|
36 |
)
|
37 |
|
38 |
# Classify button
|
@@ -40,29 +47,51 @@ if st.button("Classify Feedback"):
|
|
40 |
if not feedback_input.strip():
|
41 |
st.error("Please provide valid feedback text.")
|
42 |
else:
|
43 |
-
#
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
sentiment_result = sentiment_analyzer(feedback_input)
|
60 |
-
sentiment_label = sentiment_result[0]["label"]
|
61 |
-
sentiment_score = round(sentiment_result[0]["score"], 4)
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
st.write(f"### **{category}**")
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
68 |
st.warning("No categories matched the selected confidence threshold.")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
import nltk
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Download NLTK data for sentence tokenization
|
7 |
+
nltk.download('punkt')
|
8 |
|
9 |
# Load the Hugging Face pipelines
|
10 |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")
|
|
|
20 |
This app uses Hugging Face models to detect the topics and intent of customer feedback
|
21 |
and determine the sentiment (positive or negative) for each relevant category.
|
22 |
A single feedback may belong to multiple categories, such as Pricing, Feature, and Customer Service.
|
23 |
+
The feedback is split into sentences, and each sentence is categorized and analyzed for sentiment.
|
24 |
"""
|
25 |
)
|
26 |
|
|
|
28 |
feedback_input = st.text_area(
|
29 |
"Enter customer feedback:",
|
30 |
placeholder="Type your feedback here...",
|
31 |
+
height=200,
|
32 |
+
value="I was shocked to see the price tag on this new gadget—it’s way too expensive for what it offers, especially compared to competitors! Despite the issues I faced with my order, the customer service team's effort to rectify the situation was commendable, though their follow-up could have used some improvement for full satisfaction."
|
33 |
)
|
34 |
|
35 |
# Confidence threshold for zero-shot classification
|
|
|
39 |
max_value=1.0,
|
40 |
value=0.2,
|
41 |
step=0.05,
|
42 |
+
help="Categories with confidence scores above this threshold will be displayed."
|
43 |
)
|
44 |
|
45 |
# Classify button
|
|
|
47 |
if not feedback_input.strip():
|
48 |
st.error("Please provide valid feedback text.")
|
49 |
else:
|
50 |
+
# Split the feedback into sentences
|
51 |
+
sentences = nltk.sent_tokenize(feedback_input)
|
52 |
+
if not sentences:
|
53 |
+
st.error("Could not split feedback into sentences.")
|
54 |
+
st.stop()
|
55 |
+
|
56 |
+
# Dictionary to store results for each category
|
57 |
+
category_results = {category: [] for category in CATEGORIES}
|
58 |
+
|
59 |
+
# Process each sentence
|
60 |
+
for sentence in sentences:
|
61 |
+
# Perform zero-shot classification on the sentence
|
62 |
+
classification_result = classifier(sentence, CATEGORIES, multi_label=True)
|
63 |
|
64 |
+
# Get categories with scores above the threshold
|
65 |
+
for label, score in zip(classification_result["labels"], classification_result["scores"]):
|
66 |
+
if score >= threshold:
|
67 |
+
# Perform sentiment analysis on the sentence
|
68 |
+
sentiment_result = sentiment_analyzer(sentence)
|
69 |
+
sentiment_label = sentiment_result[0]["label"]
|
70 |
+
sentiment_score = round(sentiment_result[0]["score"], 4)
|
71 |
|
72 |
+
# Store the result for the category
|
73 |
+
category_results[label].append({
|
74 |
+
"sentence": sentence,
|
75 |
+
"confidence": round(score, 4),
|
76 |
+
"sentiment": sentiment_label,
|
77 |
+
"sentiment_score": sentiment_score
|
78 |
+
})
|
79 |
|
80 |
+
# Display the results
|
81 |
+
st.subheader("Categorized Feedback with Sentiment Analysis")
|
|
|
|
|
|
|
82 |
|
83 |
+
# Flag to check if any categories were found
|
84 |
+
found_categories = False
|
85 |
+
|
86 |
+
for category, results in category_results.items():
|
87 |
+
if results: # If the category has any sentences
|
88 |
+
found_categories = True
|
89 |
st.write(f"### **{category}**")
|
90 |
+
for result in results:
|
91 |
+
st.write(f"- **Sentence**: {result['sentence']}")
|
92 |
+
st.write(f" - Confidence: {result['confidence']}")
|
93 |
+
st.write(f" - Sentiment: {result['sentiment']} (Score: {result['sentiment_score']})")
|
94 |
+
st.write("") # Add a blank line for readability
|
95 |
+
|
96 |
+
if not found_categories:
|
97 |
st.warning("No categories matched the selected confidence threshold.")
|