Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import nltk | |
# Download NLTK data for sentence tokenization | |
nltk.download('punkt_tab') | |
# Load the Hugging Face pipelines | |
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli") | |
sentiment_analyzer = pipeline("sentiment-analysis", model="SarahMakk/CustomModel_amazon_sentiment_moshew_128_10k") | |
# Define the categories for customer feedback | |
CATEGORIES = ["Pricing", "Feature", "Customer Service", "Delivery", "Quality"] | |
# Define the fixed confidence threshold | |
CONFIDENCE_THRESHOLD = 0.8 | |
# Custom CSS for background colors | |
st.markdown( | |
""" | |
<style> | |
/* Background color for the title */ | |
.title-container { | |
background-color: #f0f0f0; /* Light gray background */ | |
padding: 10px; | |
border-radius: 5px; | |
} | |
/* Background color for the description (st.markdown) */ | |
.description-container { | |
background-color: #f0f0f0; /* Light gray background */ | |
padding: 10px; | |
border-radius: 5px; | |
} | |
/* Background color for the text area (feedback_input) */ | |
.stTextArea textarea { | |
background-color: #e6f3ff; /* Light blue background */ | |
border-radius: 5px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Streamlit app UI | |
# Title with icon | |
st.markdown( | |
""" | |
<div class="title-container"> | |
<h1>📢 Customer Feedback Categorization with Sentiment Analysis</h1> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Description with background color | |
st.markdown( | |
""" | |
<div class="description-container"> | |
This app uses Hugging Face models to detect the topics and intent of customer feedback | |
and determine the sentiment (positive👍 or negative👎) for each relevant category. | |
A single feedback may belong to multiple categories, such as Pricing, Feature, and Customer Service. | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Input text box for customer feedback with background color | |
feedback_input = st.text_area( | |
"Enter customer feedback:", | |
placeholder="Type your feedback here...", | |
height=200 | |
) | |
# Classify button | |
if st.button("Classify Feedback"): | |
if not feedback_input.strip(): | |
st.error("Please provide valid feedback text.") | |
else: | |
# Split the feedback into sentences | |
sentences = nltk.sent_tokenize(feedback_input) | |
if not sentences: | |
st.error("Could not split feedback into sentences.") | |
st.stop() | |
# Dictionary to store results for each category | |
category_results = {category: [] for category in CATEGORIES} | |
# Process each sentence | |
for sentence in sentences: | |
# Perform zero-shot classification on the sentence | |
classification_result = classifier(sentence, CATEGORIES, multi_label=True) | |
# Get categories with scores above the threshold | |
for label, score in zip(classification_result["labels"], classification_result["scores"]): | |
if score >= CONFIDENCE_THRESHOLD: | |
# Perform sentiment analysis on the sentence | |
sentiment_result = sentiment_analyzer(sentence) | |
raw_label = sentiment_result[0]["label"] | |
sentiment_score = round(sentiment_result[0]["score"], 4) | |
# Map the raw label to NEGATIVE or POSITIVE | |
if raw_label == "LABEL_0": | |
sentiment_label = "NEGATIVE" | |
sentiment_icon = "👎" # Thumbs-down icon for negative | |
sentiment_color = "red" # Red color for negative | |
elif raw_label == "LABEL_1": | |
sentiment_label = "POSITIVE" | |
sentiment_icon = "👍" # Thumbs-up icon for positive | |
sentiment_color = "green" # Green color for positive | |
else: | |
sentiment_label = raw_label # Fallback in case of unexpected label | |
# Store the result for the category | |
category_results[label].append({ | |
"sentence": sentence, | |
"confidence": round(score, 4), | |
"sentiment": sentiment_label, | |
"sentiment_score": sentiment_score, | |
"sentiment_icon": sentiment_icon, | |
"sentiment_color": sentiment_color | |
}) | |
# Check if there are any relevant categories | |
st.subheader("Categorized Feedback with Sentiment Analysis") | |
found_categories = False | |
for i, (category, results) in enumerate(category_results.items()): | |
if results: # If the category has any sentences | |
found_categories = True | |
st.write(f"### **{category}**") | |
for result in results: | |
st.write(f"- **Sentence**: {result['sentence']}") | |
st.write(f" - Confidence: {result['confidence']}") | |
# Use st.markdown with HTML to display the sentiment with icon and color | |
st.markdown( | |
f" - Sentiment: {result['sentiment_icon']} " | |
f"<span style='color:{result['sentiment_color']}'>{result['sentiment']}</span> " | |
f"(Score: {result['sentiment_score']})", | |
unsafe_allow_html=True | |
) | |
# Add a horizontal divider after each category (except the last one) | |
if i < len(category_results) - 1 and any(category_results[cat] for cat in list(category_results.keys())[i+1:]): | |
st.markdown("---") # Horizontal line to separate categories | |
if not found_categories: | |
st.warning("No categories met the confidence threshold of 0.8.") |