Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
# Fetch Hugging Face and Groq API keys from secrets | |
Transalate_token = os.getenv('HUGGINGFACE_TOKEN') | |
Image_Token = os.getenv('HUGGINGFACE_TOKEN') | |
Content_Token = os.getenv('GROQ_API_KEY') | |
Image_prompt_token = os.getenv('GROQ_API_KEY') | |
# API Headers | |
Translate = {"Authorization": f"Bearer {Transalate_token}"} | |
Image_generation = {"Authorization": f"Bearer {Image_Token}"} | |
Content_generation = { | |
"Authorization": f"Bearer {Content_Token}", | |
"Content-Type": "application/json" | |
} | |
Image_Prompt = { | |
"Authorization": f"Bearer {Image_prompt_token}", | |
"Content-Type": "application/json" | |
} | |
# Translation Model API URL (Tamil to English) | |
translation_url = "https://api-inference.huggingface.co/models/facebook/mbart-large-50-many-to-one-mmt" | |
# Text-to-Image Model API URL | |
image_generation_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" | |
# Function to query Hugging Face translation model with try-except retry logic | |
def translate_text(text): | |
payload = {"inputs": text} | |
# Try block to handle the first attempt | |
try: | |
response = requests.post(translation_url, headers=Translate, json=payload) | |
response.raise_for_status() # Raise an error for bad status codes (non-200) | |
result = response.json() | |
translated_text = result[0]['generated_text'] | |
return translated_text | |
except requests.exceptions.RequestException as e: | |
st.warning(f"First attempt failed due to: {e}. Retrying...") | |
# Retry the request once if it fails | |
try: | |
response = requests.post(translation_url, headers=Translate, json=payload) | |
response.raise_for_status() # Raise an error for bad status codes (non-200) | |
result = response.json() | |
translated_text = result[0]['generated_text'] | |
return translated_text | |
except requests.exceptions.RequestException as e: | |
st.error(f"Second attempt failed: {e}") | |
return None | |
# Function to query Groq content generation model | |
def generate_content(english_text, max_tokens, temperature): | |
url = "https://api.groq.com/openai/v1/chat/completions" | |
payload = { | |
"model": "llama-3.1-70b-versatile", | |
"messages": [ | |
{"role": "system", "content": "You are a creative and insightful writer."}, | |
{"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."} | |
], | |
"max_tokens": max_tokens, | |
"temperature": temperature | |
} | |
response = requests.post(url, json=payload, headers=Content_generation) | |
if response.status_code == 200: | |
result = response.json() | |
return result['choices'][0]['message']['content'] | |
else: | |
st.error(f"Content Generation Error: {response.status_code}") | |
return None | |
# Function to generate image prompt | |
def generate_image_prompt(english_text): | |
payload = { | |
"model": "mixtral-8x7b-32768", | |
"messages": [ | |
{"role": "system", "content": "You are a professional Text to image prompt generator."}, | |
{"role": "user", "content": f"Create a text to image generation prompt about {english_text} within 30 tokens."} | |
], | |
"max_tokens": 30 | |
} | |
response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=Image_Prompt) | |
if response.status_code == 200: | |
result = response.json() | |
return result['choices'][0]['message']['content'] | |
else: | |
st.error(f"Prompt Generation Error: {response.status_code}") | |
return None | |
# Function to generate an image from the prompt | |
def generate_image(image_prompt): | |
data = {"inputs": image_prompt} | |
response = requests.post(image_generation_url, headers=Image_generation, json=data) | |
if response.status_code == 200: | |
return response.content | |
else: | |
st.error(f"Image Generation Error {response.status_code}: {response.text}") | |
return None | |
# User Guide content | |
def user_guide(): | |
st.title("User Guide") | |
st.write(""" | |
### Welcome to FusionMind Multimodel ---> Your one stop solution for content creation. | |
***How to use this app:*** | |
1. **Input Tamil Text**: | |
- You can either select one of the suggested Tamil phrases or input your own text. The app primarily focuses on Tamil inputs, but it supports a wide range of other languages as well (see the list below). | |
2. **Generate Translations**: | |
- Once you've input your text, the app will automatically translate it to English. The translation model is a **many-to-one model**, meaning it can take input from various languages and translate it into English. | |
3. **Generate Educational Content**: | |
- After translating the text into English, the app will generate **educational content** based on the translated input. You can adjust the creativity of the content generation using the temperature slider, and control the length of the output with the token limit setting. | |
4. **Generate Images**: | |
- In addition to generating content, the app can also generate an **image** related to the translated content. You don’t need to worry about creating complex image prompts—FusionMind includes an automatic **image prompt generator** that will convert your input into a well-defined image prompt, ensuring better image generation results. | |
--- | |
### Features: | |
- **Multilingual Translation**: | |
- FusionMind supports a **many-to-one translation model**, so you can input text in a wide variety of languages, not just Tamil. Below are the supported languages: | |
- **Arabic (ar_AR)**, **Czech (cs_CZ)**, **German (de_DE)**, **English (en_XX)**, **Spanish (es_XX)**, **Estonian (et_EE)**, **Finnish (fi_FI)**, **French (fr_XX)**, **Gujarati (gu_IN)**, **Hindi (hi_IN)**, **Italian (it_IT)**, **Japanese (ja_XX)**, **Kazakh (kk_KZ)**, **Korean (ko_KR)**, **Lithuanian (lt_LT)**, **Latvian (lv_LV)**, **Burmese (my_MM)**, **Nepali (ne_NP)**, **Dutch (nl_XX)**, **Romanian (ro_RO)**, **Russian (ru_RU)**, **Sinhala (si_LK)**, **Turkish (tr_TR)**, **Vietnamese (vi_VN)**, **Chinese (zh_CN)**, **Afrikaans (af_ZA)**, **Azerbaijani (az_AZ)**, **Bengali (bn_IN)**, **Persian (fa_IR)**, **Hebrew (he_IL)**, **Croatian (hr_HR)**, **Indonesian (id_ID)**, **Georgian (ka_GE)**, **Khmer (km_KH)**, **Macedonian (mk_MK)**, **Malayalam (ml_IN)**, **Mongolian (mn_MN)**, **Marathi (mr_IN)**, **Polish (pl_PL)**, **Pashto (ps_AF)**, **Portuguese (pt_XX)**, **Swedish (sv_SE)**, **Swahili (sw_KE)**, **Tamil (ta_IN)**, **Telugu (te_IN)**, **Thai (th_TH)**, **Tagalog (tl_XX)**, **Ukrainian (uk_UA)**, **Urdu (ur_PK)**, **Xhosa (xh_ZA)**, **Galician (gl_ES)**, **Slovene (sl_SI)**. | |
- **Temperature Adjustment**: | |
- You can adjust the **temperature** of the content generation. A **higher temperature** makes the content more creative and varied, while a **lower temperature** generates more focused and deterministic responses. | |
- **Token Limit**: | |
- Set the **maximum number of tokens** for content generation. This allows you to control the length of the generated educational content. | |
- **Automatic Retries**: | |
- If a translation request fails due to any reason, the app is designed to **automatically retry**, ensuring a smooth experience. | |
- **Auto-Generated Image Prompts**: | |
- One of the unique features of FusionMind is the **auto-generated image prompts**. Even if you're not experienced in creating detailed prompts for image generation, the app will take care of this for you. It automatically converts the translated text or content into a well-defined prompt that produces more accurate and high-quality images. | |
--- | |
Enjoy the multimodal experience with **FusionMind** and explore its powerful translation, content generation, and image generation features! | |
""") | |
# Main Streamlit app | |
def main(): | |
# Sidebar for navigation | |
st.sidebar.title("Navigation") | |
page = st.sidebar.radio("Go to", ["Home", "User Guide"]) | |
# If user selects "User Guide" page | |
if page == "User Guide": | |
user_guide() | |
else: | |
# Custom CSS for background, borders, and other styling | |
st.markdown( | |
""" | |
<style> | |
body { | |
background-image: url('https://wallpapercave.com/wp/wp4008910.jpg'); | |
background-size: cover; | |
} | |
.reportview-container { | |
background: rgba(255, 255, 255, 0.85); | |
padding: 2rem; | |
border-radius: 10px; | |
box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.1); | |
} | |
.result-container { | |
border: 2px solid #4CAF50; | |
padding: 20px; | |
border-radius: 10px; | |
margin-top: 20px; | |
animation: fadeIn 2s ease; | |
} | |
@keyframes fadeIn { | |
0% { opacity: 0; } | |
100% { opacity: 1; } | |
} | |
.stButton button { | |
background-color: #4CAF50; | |
color: white; | |
border-radius: 10px; | |
padding: 10px; | |
} | |
.stButton button:hover { | |
background-color: #45a049; | |
transform: scale(1.05); | |
transition: 0.2s ease-in-out; | |
} | |
</style> | |
""", unsafe_allow_html=True | |
) | |
st.title("🅰️ℹ️ FusionMind ➡️ Multimodal") | |
# Sidebar for temperature and token adjustment | |
st.sidebar.header("Settings") | |
temperature = st.sidebar.slider("Select Temperature", 0.1, 1.0, 0.7) | |
max_tokens = st.sidebar.slider("Max Tokens for Content Generation", 100, 400, 200) | |
# Suggested inputs | |
st.write("## Suggested Inputs") | |
suggestions = ["தரவு அறிவியல்", "புதிய திறன்களைக் கற்றுக்கொள்வது எப்படி", "ராக்கெட் எப்படி வேலை செய்கிறது"] | |
selected_suggestion = st.selectbox("Select a suggestion or enter your own:", [""] + suggestions) | |
# Input box for user | |
tamil_input = st.text_input("Enter Tamil text (or select a suggestion):", selected_suggestion) | |
if st.button("Generate"): | |
# Step 1: Translation (Tamil to English) | |
if tamil_input: | |
st.write("### Translated English Text:") | |
english_text = translate_text(tamil_input) | |
if english_text: | |
st.success(english_text) | |
# Step 2: Generate Educational Content | |
st.write("### Generated Educational Content:") | |
with st.spinner('Generating content...'): | |
content_output = generate_content(english_text, max_tokens, temperature) | |
if content_output: | |
st.success(content_output) | |
# Step 3: Generate Image from the prompt | |
st.write("### Generated Image:") | |
with st.spinner('Generating image...'): | |
image_prompt = generate_image_prompt(english_text) | |
image_data = generate_image(image_prompt) | |
if image_data: | |
st.image(image_data, caption="Generated Image") | |
if __name__ == "__main__": | |
main() | |