File size: 5,610 Bytes
07930ee
 
 
 
 
3302d5d
1f8970b
 
 
 
07930ee
 
1f8970b
 
 
 
 
 
 
 
f37d2cd
 
 
 
 
 
 
 
 
 
 
 
1f8970b
f37d2cd
 
 
 
 
 
3302d5d
f37d2cd
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8970b
f37d2cd
 
 
 
 
82a5a4c
f37d2cd
 
 
 
 
 
 
 
 
 
 
 
1f8970b
f37d2cd
 
 
 
 
82a5a4c
f37d2cd
 
 
 
 
1f8970b
f37d2cd
 
 
 
82a5a4c
f37d2cd
 
 
 
5e70bfa
3302d5d
f37d2cd
 
 
3302d5d
f37d2cd
 
 
 
 
 
 
 
 
 
 
 
 
 
3302d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37d2cd
07930ee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
import requests
import os

# Fetch Hugging Face and Groq API keys from secrets

Transalate_token = os.getenv('HUGGINGFACE_TOKEN')
Image_Token = os.getenv('HUGGINGFACE_TOKEN')
Content_Token = os.getenv('GROQ_API_KEY')
Image_prompt_token = os.getenv('GROQ_API_KEY')

# API Headers
Translate = {"Authorization": f"Bearer {Transalate_token}"}
Image_generation = {"Authorization": f"Bearer {Image_Token}"}
Content_generation = {
    "Authorization": f"Bearer {Content_Token}",
    "Content-Type": "application/json"
}
Image_Prompt = {
    "Authorization": f"Bearer {Image_prompt_token}",
    "Content-Type": "application/json"
}

# Translation Model API URL (Tamil to English)
translation_url = "https://api-inference.huggingface.co/models/facebook/mbart-large-50-many-to-one-mmt"

# Text-to-Image Model API URL
image_generation_url = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"

# Function to query Hugging Face translation model
def translate_text(text):
    payload = {"inputs": text}
    response = requests.post(translation_url, headers=Translate, json=payload)
    if response.status_code == 200:
        result = response.json()
        translated_text = result[0]['generated_text']
        return translated_text
    else:
        st.error(f"Translation Error {response.status_code}: {response.text}")
        st.write(f'Please try after sometime 😥😥😥')
        return None

# Function to query Groq content generation model
def generate_content(english_text, max_tokens, temperature):
    url = "https://api.groq.com/openai/v1/chat/completions"
    payload = {
        "model": "llama-3.1-70b-versatile",
        "messages": [
            {"role": "system", "content": "You are a creative and insightful writer."},
            {"role": "user", "content": f"Write educational content about {english_text} within {max_tokens} tokens."}
        ],
        "max_tokens": max_tokens,
        "temperature": temperature
    }
    response = requests.post(url, json=payload, headers=Content_generation)
    if response.status_code == 200:
        result = response.json()
        return result['choices'][0]['message']['content']
    else:
        st.error(f"Content Generation Error: {response.status_code}")
        st.write(f'Please try after sometime 😥😥😥')
        return None

# Function to generate image prompt
def generate_image_prompt(english_text):
    payload = {
        "model": "mixtral-8x7b-32768",
        "messages": [
            {"role": "system", "content": "You are a professional Text to image prompt generator."},
            {"role": "user", "content": f"Create a text to image generation prompt about {english_text} within 30 tokens."}
        ],
        "max_tokens": 30
    }
    response = requests.post("https://api.groq.com/openai/v1/chat/completions", json=payload, headers=Image_Prompt)
    if response.status_code == 200:
        result = response.json()
        return result['choices'][0]['message']['content']
    else:
        st.error(f"Prompt Generation Error: {response.status_code}")
        st.write(f'Please try after sometime 😥😥😥')
        return None

# Function to generate an image from the prompt
def generate_image(image_prompt):
    data = {"inputs": image_prompt}
    response = requests.post(image_generation_url, headers=Image_generation, json=data)
    if response.status_code == 200:
        return response.content
    else:
        st.error(f"Image Generation Error {response.status_code}: {response.text}")
        st.write(f'Please try after sometime 😥😥😥')
        return None

# Main Streamlit app
def main():
    st.title("🅰️ℹ️ FusionMind ➡️ Multimodal Generator 🤖")

    # Sidebar for temperature and token adjustment
    st.sidebar.header("Settings")
    temperature = st.sidebar.slider("Select Temperature", 0.1, 1.0, 0.7)
    max_tokens = st.sidebar.slider("Max Tokens for Content Generation", 100, 400, 200)

    # Suggested inputs
    st.write("## Suggested Inputs")
    suggestions = ["தரவு அறிவியல்", "புதிய திறன்களைக் கற்றுக்கொள்வது எப்படி", "ராக்கெட் எப்படி வேலை செய்கிறது"]
    selected_suggestion = st.selectbox("Select a suggestion or enter your own:", [""] + suggestions)

    # Input box for user
    tamil_input = st.text_input("Enter Tamil text (or select a suggestion):", selected_suggestion)

    if st.button("Generate"):
        # Step 1: Translation (Tamil to English)
        if tamil_input:
            st.write("### Translated English Text:")
            english_text = translate_text(tamil_input)
            if english_text:
                st.success(english_text)

                # Step 2: Generate Educational Content
                st.write("### Generated Educational Content:")
                with st.spinner('Generating content...'):
                    content_output = generate_content(english_text, max_tokens, temperature)
                    if content_output:
                        st.success(content_output)

                # Step 3: Generate Image from the prompt
                st.write("### Generated Image:")
                with st.spinner('Generating image...'):
                    image_prompt = generate_image_prompt(english_text)
                    image_data = generate_image(image_prompt)
                    if image_data:
                        st.image(image_data, caption="Generated Image")

if __name__ == "__main__":
    main()