Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import whisper
|
4 |
+
from transformers import pipeline , T5ForConditionalGeneration, T5Tokenizer
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import spacy
|
8 |
+
|
9 |
+
# Load models once
|
10 |
+
whisper_model = whisper.load_model("base")
|
11 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1)
|
12 |
+
|
13 |
+
# Load model and tokenizer
|
14 |
+
model_name = "valhalla/t5-base-qg-hl"
|
15 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
16 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
17 |
+
|
18 |
+
# Load spaCy for NER
|
19 |
+
nlp = spacy.load("en_core_web_sm")
|
20 |
+
|
21 |
+
# Load QA pipeline
|
22 |
+
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
23 |
+
|
24 |
+
def extract_audio(video_path, audio_output_path):
|
25 |
+
command = ['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '2', audio_output_path]
|
26 |
+
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
27 |
+
return audio_output_path
|
28 |
+
|
29 |
+
def process_video(video_file):
|
30 |
+
try:
|
31 |
+
import whisper
|
32 |
+
from transformers import pipeline
|
33 |
+
import subprocess
|
34 |
+
import os
|
35 |
+
|
36 |
+
audio_path = "extracted_audio.wav"
|
37 |
+
|
38 |
+
# Extract audio from video using FFmpeg
|
39 |
+
command = ['ffmpeg', '-i', video_file, '-vn', '-acodec', 'pcm_s16le', '-ar', '44100', '-ac', '2', audio_path]
|
40 |
+
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
41 |
+
|
42 |
+
if not os.path.exists(audio_path):
|
43 |
+
return "Audio extraction failed.", "No summary generated."
|
44 |
+
|
45 |
+
# Load Whisper model
|
46 |
+
model = whisper.load_model("base")
|
47 |
+
result = model.transcribe(audio_path)
|
48 |
+
|
49 |
+
transcript_text = result['text']
|
50 |
+
|
51 |
+
# Load summarizer
|
52 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=-1)
|
53 |
+
|
54 |
+
# Chunk text if needed
|
55 |
+
chunks = [transcript_text[i:i + 1024] for i in range(0, len(transcript_text), 1024)]
|
56 |
+
summaries = [summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] for chunk in chunks]
|
57 |
+
final_summary = ' '.join(summaries)
|
58 |
+
|
59 |
+
return transcript_text, final_summary
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
return f"Error: {str(e)}", f"Error: {str(e)}"
|
63 |
+
|
64 |
+
# Extract top named entities for highlighting
|
65 |
+
def select_top_entities(text, max_entities=3):
|
66 |
+
doc = nlp(text)
|
67 |
+
candidates = [ent.text for ent in doc.ents if 2 <= len(ent.text) <= 30 and len(ent.text.split()) <= 5]
|
68 |
+
seen = set()
|
69 |
+
top_entities = []
|
70 |
+
for entity in candidates:
|
71 |
+
if entity not in seen:
|
72 |
+
seen.add(entity)
|
73 |
+
top_entities.append(entity)
|
74 |
+
if len(top_entities) >= max_entities:
|
75 |
+
break
|
76 |
+
return top_entities
|
77 |
+
|
78 |
+
# Generate questions for each highlighted entity
|
79 |
+
def generate_questions(context):
|
80 |
+
entities = select_top_entities(context, max_entities=3)
|
81 |
+
questions = []
|
82 |
+
|
83 |
+
for ent in entities:
|
84 |
+
highlighted = context.replace(ent, f"<hl> {ent} <hl>", 1)
|
85 |
+
input_text = f"generate question: {highlighted}"
|
86 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True)
|
87 |
+
outputs = model.generate(
|
88 |
+
input_ids=input_ids,
|
89 |
+
max_length=64,
|
90 |
+
num_beams=4,
|
91 |
+
num_return_sequences=1,
|
92 |
+
no_repeat_ngram_size=2,
|
93 |
+
early_stopping=True
|
94 |
+
)
|
95 |
+
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
+
questions.append(question)
|
97 |
+
|
98 |
+
return "\n".join(f"Q{i+1}: {q}" for i, q in enumerate(questions))
|
99 |
+
|
100 |
+
def generate_answers(context, questions):
|
101 |
+
"""
|
102 |
+
context: str β typically the summary
|
103 |
+
questions: list[str] or str β can be multiline string or list
|
104 |
+
returns: str β formatted answers
|
105 |
+
"""
|
106 |
+
if isinstance(questions, str):
|
107 |
+
questions = questions.strip().split('\n')
|
108 |
+
|
109 |
+
answers = []
|
110 |
+
for q in questions:
|
111 |
+
if q.strip():
|
112 |
+
result = qa_pipeline(question=q.strip(), context=context)
|
113 |
+
answers.append(f"Q: {q.strip()}\nA: {result['answer']}")
|
114 |
+
|
115 |
+
return "\n\n".join(answers)
|
116 |
+
|
117 |
+
|
118 |
+
import gradio as gr
|
119 |
+
|
120 |
+
# Dummy processing functions β replace these with your actual logic
|
121 |
+
def process_video_(video_path):
|
122 |
+
# Step 1: Transcribe the video
|
123 |
+
transcript , summary = process_video(video_path)
|
124 |
+
|
125 |
+
questions = generate_questions(summary)
|
126 |
+
|
127 |
+
answers = generate_answers(summary, questions)
|
128 |
+
|
129 |
+
return transcript, summary, questions , answers
|
130 |
+
|
131 |
+
# Gradio Interface
|
132 |
+
iface = gr.Interface(
|
133 |
+
fn=process_video_,
|
134 |
+
inputs=gr.Video(label="Upload a video"),
|
135 |
+
outputs=[
|
136 |
+
gr.Textbox(label="Transcript"),
|
137 |
+
gr.Textbox(label="Summary"),
|
138 |
+
gr.Textbox(label="Generated Questions"),
|
139 |
+
gr.Textbox(label="Generated Answers")
|
140 |
+
],
|
141 |
+
title="Vision to Insight",
|
142 |
+
description="Upload a video to extract a transcript, generate a summary, and get 2β3 meaningful questions based on the summary."
|
143 |
+
)
|
144 |
+
|
145 |
+
iface.launch()
|