Spaces:
Running
Running
File size: 20,913 Bytes
f1d5e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import json
import logging
import pdb
import traceback
from typing import Any, Awaitable, Callable, Dict, Generic, List, Optional, Type, TypeVar
from PIL import Image, ImageDraw, ImageFont
import os
import base64
import io
import asyncio
import time
import platform
from browser_use.agent.prompts import SystemPrompt, AgentMessagePrompt
from browser_use.agent.service import Agent
from browser_use.agent.message_manager.utils import convert_input_messages, extract_json_from_model_output, \
save_conversation
from browser_use.agent.views import (
ActionResult,
AgentError,
AgentHistory,
AgentHistoryList,
AgentOutput,
AgentSettings,
AgentState,
AgentStepInfo,
StepMetadata,
ToolCallingMethod,
)
from browser_use.agent.gif import create_history_gif
from browser_use.browser.browser import Browser
from browser_use.browser.context import BrowserContext
from browser_use.browser.views import BrowserStateHistory
from browser_use.controller.service import Controller
from browser_use.telemetry.views import (
AgentEndTelemetryEvent,
AgentRunTelemetryEvent,
AgentStepTelemetryEvent,
)
from browser_use.utils import time_execution_async
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
BaseMessage,
HumanMessage,
AIMessage
)
from browser_use.browser.views import BrowserState, BrowserStateHistory
from browser_use.agent.prompts import PlannerPrompt
from json_repair import repair_json
from src.utils.agent_state import AgentState
from .custom_message_manager import CustomMessageManager, CustomMessageManagerSettings
from .custom_views import CustomAgentOutput, CustomAgentStepInfo, CustomAgentState
logger = logging.getLogger(__name__)
Context = TypeVar('Context')
class CustomAgent(Agent):
def __init__(
self,
task: str,
llm: BaseChatModel,
add_infos: str = "",
# Optional parameters
browser: Browser | None = None,
browser_context: BrowserContext | None = None,
controller: Controller[Context] = Controller(),
# Initial agent run parameters
sensitive_data: Optional[Dict[str, str]] = None,
initial_actions: Optional[List[Dict[str, Dict[str, Any]]]] = None,
# Cloud Callbacks
register_new_step_callback: Callable[['BrowserState', 'AgentOutput', int], Awaitable[None]] | None = None,
register_done_callback: Callable[['AgentHistoryList'], Awaitable[None]] | None = None,
register_external_agent_status_raise_error_callback: Callable[[], Awaitable[bool]] | None = None,
# Agent settings
use_vision: bool = True,
use_vision_for_planner: bool = False,
save_conversation_path: Optional[str] = None,
save_conversation_path_encoding: Optional[str] = 'utf-8',
max_failures: int = 3,
retry_delay: int = 10,
system_prompt_class: Type[SystemPrompt] = SystemPrompt,
agent_prompt_class: Type[AgentMessagePrompt] = AgentMessagePrompt,
max_input_tokens: int = 128000,
validate_output: bool = False,
message_context: Optional[str] = None,
generate_gif: bool | str = False,
available_file_paths: Optional[list[str]] = None,
include_attributes: list[str] = [
'title',
'type',
'name',
'role',
'aria-label',
'placeholder',
'value',
'alt',
'aria-expanded',
'data-date-format',
],
max_actions_per_step: int = 10,
tool_calling_method: Optional[ToolCallingMethod] = 'auto',
page_extraction_llm: Optional[BaseChatModel] = None,
planner_llm: Optional[BaseChatModel] = None,
planner_interval: int = 1, # Run planner every N steps
# Inject state
injected_agent_state: Optional[AgentState] = None,
context: Context | None = None,
):
super(CustomAgent, self).__init__(
task=task,
llm=llm,
browser=browser,
browser_context=browser_context,
controller=controller,
sensitive_data=sensitive_data,
initial_actions=initial_actions,
register_new_step_callback=register_new_step_callback,
register_done_callback=register_done_callback,
register_external_agent_status_raise_error_callback=register_external_agent_status_raise_error_callback,
use_vision=use_vision,
use_vision_for_planner=use_vision_for_planner,
save_conversation_path=save_conversation_path,
save_conversation_path_encoding=save_conversation_path_encoding,
max_failures=max_failures,
retry_delay=retry_delay,
system_prompt_class=system_prompt_class,
max_input_tokens=max_input_tokens,
validate_output=validate_output,
message_context=message_context,
generate_gif=generate_gif,
available_file_paths=available_file_paths,
include_attributes=include_attributes,
max_actions_per_step=max_actions_per_step,
tool_calling_method=tool_calling_method,
page_extraction_llm=page_extraction_llm,
planner_llm=planner_llm,
planner_interval=planner_interval,
injected_agent_state=injected_agent_state,
context=context,
)
self.state = injected_agent_state or CustomAgentState()
self.add_infos = add_infos
self._message_manager = CustomMessageManager(
task=task,
system_message=self.settings.system_prompt_class(
self.available_actions,
max_actions_per_step=self.settings.max_actions_per_step,
).get_system_message(),
settings=CustomMessageManagerSettings(
max_input_tokens=self.settings.max_input_tokens,
include_attributes=self.settings.include_attributes,
message_context=self.settings.message_context,
sensitive_data=sensitive_data,
available_file_paths=self.settings.available_file_paths,
agent_prompt_class=agent_prompt_class
),
state=self.state.message_manager_state,
)
def _log_response(self, response: CustomAgentOutput) -> None:
"""Log the model's response"""
if "Success" in response.current_state.evaluation_previous_goal:
emoji = "β
"
elif "Failed" in response.current_state.evaluation_previous_goal:
emoji = "β"
else:
emoji = "π€·"
logger.info(f"{emoji} Eval: {response.current_state.evaluation_previous_goal}")
logger.info(f"π§ New Memory: {response.current_state.important_contents}")
logger.info(f"π€ Thought: {response.current_state.thought}")
logger.info(f"π― Next Goal: {response.current_state.next_goal}")
for i, action in enumerate(response.action):
logger.info(
f"π οΈ Action {i + 1}/{len(response.action)}: {action.model_dump_json(exclude_unset=True)}"
)
def _setup_action_models(self) -> None:
"""Setup dynamic action models from controller's registry"""
# Get the dynamic action model from controller's registry
self.ActionModel = self.controller.registry.create_action_model()
# Create output model with the dynamic actions
self.AgentOutput = CustomAgentOutput.type_with_custom_actions(self.ActionModel)
def update_step_info(
self, model_output: CustomAgentOutput, step_info: CustomAgentStepInfo = None
):
"""
update step info
"""
if step_info is None:
return
step_info.step_number += 1
important_contents = model_output.current_state.important_contents
if (
important_contents
and "None" not in important_contents
and important_contents not in step_info.memory
):
step_info.memory += important_contents + "\n"
logger.info(f"π§ All Memory: \n{step_info.memory}")
@time_execution_async("--get_next_action")
async def get_next_action(self, input_messages: list[BaseMessage]) -> AgentOutput:
"""Get next action from LLM based on current state"""
fixed_input_messages = self._convert_input_messages(input_messages)
ai_message = self.llm.invoke(fixed_input_messages)
self.message_manager._add_message_with_tokens(ai_message)
if hasattr(ai_message, "reasoning_content"):
logger.info("π€― Start Deep Thinking: ")
logger.info(ai_message.reasoning_content)
logger.info("π€― End Deep Thinking")
if isinstance(ai_message.content, list):
ai_content = ai_message.content[0]
else:
ai_content = ai_message.content
try:
ai_content = ai_content.replace("```json", "").replace("```", "")
ai_content = repair_json(ai_content)
parsed_json = json.loads(ai_content)
parsed: AgentOutput = self.AgentOutput(**parsed_json)
except Exception as e:
import traceback
traceback.print_exc()
logger.debug(ai_message.content)
raise ValueError('Could not parse response.')
if parsed is None:
logger.debug(ai_message.content)
raise ValueError('Could not parse response.')
# cut the number of actions to max_actions_per_step if needed
if len(parsed.action) > self.settings.max_actions_per_step:
parsed.action = parsed.action[: self.settings.max_actions_per_step]
self._log_response(parsed)
return parsed
async def _run_planner(self) -> Optional[str]:
"""Run the planner to analyze state and suggest next steps"""
# Skip planning if no planner_llm is set
if not self.settings.planner_llm:
return None
# Create planner message history using full message history
planner_messages = [
PlannerPrompt(self.controller.registry.get_prompt_description()).get_system_message(),
*self.message_manager.get_messages()[1:], # Use full message history except the first
]
if not self.settings.use_vision_for_planner and self.settings.use_vision:
last_state_message: HumanMessage = planner_messages[-1]
# remove image from last state message
new_msg = ''
if isinstance(last_state_message.content, list):
for msg in last_state_message.content:
if msg['type'] == 'text':
new_msg += msg['text']
elif msg['type'] == 'image_url':
continue
else:
new_msg = last_state_message.content
planner_messages[-1] = HumanMessage(content=new_msg)
# Get planner output
response = await self.settings.planner_llm.ainvoke(planner_messages)
plan = str(response.content)
last_state_message = self.message_manager.get_messages()[-1]
if isinstance(last_state_message, HumanMessage):
# remove image from last state message
if isinstance(last_state_message.content, list):
for msg in last_state_message.content:
if msg['type'] == 'text':
msg['text'] += f"\nPlanning Agent outputs plans:\n {plan}\n"
else:
last_state_message.content += f"\nPlanning Agent outputs plans:\n {plan}\n "
try:
plan_json = json.loads(plan.replace("```json", "").replace("```", ""))
logger.info(f'π Plans:\n{json.dumps(plan_json, indent=4)}')
if hasattr(response, "reasoning_content"):
logger.info("π€― Start Planning Deep Thinking: ")
logger.info(response.reasoning_content)
logger.info("π€― End Planning Deep Thinking")
except json.JSONDecodeError:
logger.info(f'π Plans:\n{plan}')
except Exception as e:
logger.debug(f'Error parsing planning analysis: {e}')
logger.info(f'π Plans: {plan}')
return plan
@time_execution_async("--step")
async def step(self, step_info: Optional[CustomAgentStepInfo] = None) -> None:
"""Execute one step of the task"""
logger.info(f"\nπ Step {self.state.n_steps}")
state = None
model_output = None
result: list[ActionResult] = []
step_start_time = time.time()
tokens = 0
try:
state = await self.browser_context.get_state()
await self._raise_if_stopped_or_paused()
self.message_manager.add_state_message(state, self.state.last_action, self.state.last_result, step_info,
self.settings.use_vision)
# Run planner at specified intervals if planner is configured
if self.settings.planner_llm and self.state.n_steps % self.settings.planner_interval == 0:
await self._run_planner()
input_messages = self.message_manager.get_messages()
tokens = self._message_manager.state.history.current_tokens
try:
model_output = await self.get_next_action(input_messages)
self.update_step_info(model_output, step_info)
self.state.n_steps += 1
if self.register_new_step_callback:
await self.register_new_step_callback(state, model_output, self.state.n_steps)
if self.settings.save_conversation_path:
target = self.settings.save_conversation_path + f'_{self.state.n_steps}.txt'
save_conversation(input_messages, model_output, target,
self.settings.save_conversation_path_encoding)
if self.model_name != "deepseek-reasoner":
# remove prev message
self.message_manager._remove_state_message_by_index(-1)
await self._raise_if_stopped_or_paused()
except Exception as e:
# model call failed, remove last state message from history
self.message_manager._remove_state_message_by_index(-1)
raise e
result: list[ActionResult] = await self.multi_act(model_output.action)
for ret_ in result:
if ret_.extracted_content and "Extracted page" in ret_.extracted_content:
# record every extracted page
if ret_.extracted_content[:100] not in self.state.extracted_content:
self.state.extracted_content += ret_.extracted_content
self.state.last_result = result
self.state.last_action = model_output.action
if len(result) > 0 and result[-1].is_done:
if not self.state.extracted_content:
self.state.extracted_content = step_info.memory
result[-1].extracted_content = self.state.extracted_content
logger.info(f"π Result: {result[-1].extracted_content}")
self.state.consecutive_failures = 0
except InterruptedError:
logger.debug('Agent paused')
self.state.last_result = [
ActionResult(
error='The agent was paused - now continuing actions might need to be repeated',
include_in_memory=True
)
]
return
except Exception as e:
result = await self._handle_step_error(e)
self.state.last_result = result
finally:
step_end_time = time.time()
actions = [a.model_dump(exclude_unset=True) for a in model_output.action] if model_output else []
self.telemetry.capture(
AgentStepTelemetryEvent(
agent_id=self.state.agent_id,
step=self.state.n_steps,
actions=actions,
consecutive_failures=self.state.consecutive_failures,
step_error=[r.error for r in result if r.error] if result else ['No result'],
)
)
if not result:
return
if state:
metadata = StepMetadata(
step_number=self.state.n_steps,
step_start_time=step_start_time,
step_end_time=step_end_time,
input_tokens=tokens,
)
self._make_history_item(model_output, state, result, metadata)
async def run(self, max_steps: int = 100) -> AgentHistoryList:
"""Execute the task with maximum number of steps"""
try:
self._log_agent_run()
# Execute initial actions if provided
if self.initial_actions:
result = await self.multi_act(self.initial_actions, check_for_new_elements=False)
self.state.last_result = result
step_info = CustomAgentStepInfo(
task=self.task,
add_infos=self.add_infos,
step_number=1,
max_steps=max_steps,
memory="",
)
for step in range(max_steps):
# Check if we should stop due to too many failures
if self.state.consecutive_failures >= self.settings.max_failures:
logger.error(f'β Stopping due to {self.settings.max_failures} consecutive failures')
break
# Check control flags before each step
if self.state.stopped:
logger.info('Agent stopped')
break
while self.state.paused:
await asyncio.sleep(0.2) # Small delay to prevent CPU spinning
if self.state.stopped: # Allow stopping while paused
break
await self.step(step_info)
if self.state.history.is_done():
if self.settings.validate_output and step < max_steps - 1:
if not await self._validate_output():
continue
await self.log_completion()
break
else:
logger.info("β Failed to complete task in maximum steps")
if not self.state.extracted_content:
self.state.history.history[-1].result[-1].extracted_content = step_info.memory
else:
self.state.history.history[-1].result[-1].extracted_content = self.state.extracted_content
return self.state.history
finally:
self.telemetry.capture(
AgentEndTelemetryEvent(
agent_id=self.state.agent_id,
is_done=self.state.history.is_done(),
success=self.state.history.is_successful(),
steps=self.state.n_steps,
max_steps_reached=self.state.n_steps >= max_steps,
errors=self.state.history.errors(),
total_input_tokens=self.state.history.total_input_tokens(),
total_duration_seconds=self.state.history.total_duration_seconds(),
)
)
if not self.injected_browser_context:
await self.browser_context.close()
if not self.injected_browser and self.browser:
await self.browser.close()
if self.settings.generate_gif:
output_path: str = 'agent_history.gif'
if isinstance(self.settings.generate_gif, str):
output_path = self.settings.generate_gif
create_history_gif(task=self.task, history=self.state.history, output_path=output_path)
|