File size: 20,913 Bytes
f1d5e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import json
import logging
import pdb
import traceback
from typing import Any, Awaitable, Callable, Dict, Generic, List, Optional, Type, TypeVar
from PIL import Image, ImageDraw, ImageFont
import os
import base64
import io
import asyncio
import time
import platform
from browser_use.agent.prompts import SystemPrompt, AgentMessagePrompt
from browser_use.agent.service import Agent
from browser_use.agent.message_manager.utils import convert_input_messages, extract_json_from_model_output, \
    save_conversation
from browser_use.agent.views import (
    ActionResult,
    AgentError,
    AgentHistory,
    AgentHistoryList,
    AgentOutput,
    AgentSettings,
    AgentState,
    AgentStepInfo,
    StepMetadata,
    ToolCallingMethod,
)
from browser_use.agent.gif import create_history_gif
from browser_use.browser.browser import Browser
from browser_use.browser.context import BrowserContext
from browser_use.browser.views import BrowserStateHistory
from browser_use.controller.service import Controller
from browser_use.telemetry.views import (
    AgentEndTelemetryEvent,
    AgentRunTelemetryEvent,
    AgentStepTelemetryEvent,
)
from browser_use.utils import time_execution_async
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
    BaseMessage,
    HumanMessage,
    AIMessage
)
from browser_use.browser.views import BrowserState, BrowserStateHistory
from browser_use.agent.prompts import PlannerPrompt

from json_repair import repair_json
from src.utils.agent_state import AgentState

from .custom_message_manager import CustomMessageManager, CustomMessageManagerSettings
from .custom_views import CustomAgentOutput, CustomAgentStepInfo, CustomAgentState

logger = logging.getLogger(__name__)

Context = TypeVar('Context')


class CustomAgent(Agent):
    def __init__(

            self,

            task: str,

            llm: BaseChatModel,

            add_infos: str = "",

            # Optional parameters

            browser: Browser | None = None,

            browser_context: BrowserContext | None = None,

            controller: Controller[Context] = Controller(),

            # Initial agent run parameters

            sensitive_data: Optional[Dict[str, str]] = None,

            initial_actions: Optional[List[Dict[str, Dict[str, Any]]]] = None,

            # Cloud Callbacks

            register_new_step_callback: Callable[['BrowserState', 'AgentOutput', int], Awaitable[None]] | None = None,

            register_done_callback: Callable[['AgentHistoryList'], Awaitable[None]] | None = None,

            register_external_agent_status_raise_error_callback: Callable[[], Awaitable[bool]] | None = None,

            # Agent settings

            use_vision: bool = True,

            use_vision_for_planner: bool = False,

            save_conversation_path: Optional[str] = None,

            save_conversation_path_encoding: Optional[str] = 'utf-8',

            max_failures: int = 3,

            retry_delay: int = 10,

            system_prompt_class: Type[SystemPrompt] = SystemPrompt,

            agent_prompt_class: Type[AgentMessagePrompt] = AgentMessagePrompt,

            max_input_tokens: int = 128000,

            validate_output: bool = False,

            message_context: Optional[str] = None,

            generate_gif: bool | str = False,

            available_file_paths: Optional[list[str]] = None,

            include_attributes: list[str] = [

                'title',

                'type',

                'name',

                'role',

                'aria-label',

                'placeholder',

                'value',

                'alt',

                'aria-expanded',

                'data-date-format',

            ],

            max_actions_per_step: int = 10,

            tool_calling_method: Optional[ToolCallingMethod] = 'auto',

            page_extraction_llm: Optional[BaseChatModel] = None,

            planner_llm: Optional[BaseChatModel] = None,

            planner_interval: int = 1,  # Run planner every N steps

            # Inject state

            injected_agent_state: Optional[AgentState] = None,

            context: Context | None = None,

    ):
        super(CustomAgent, self).__init__(
            task=task,
            llm=llm,
            browser=browser,
            browser_context=browser_context,
            controller=controller,
            sensitive_data=sensitive_data,
            initial_actions=initial_actions,
            register_new_step_callback=register_new_step_callback,
            register_done_callback=register_done_callback,
            register_external_agent_status_raise_error_callback=register_external_agent_status_raise_error_callback,
            use_vision=use_vision,
            use_vision_for_planner=use_vision_for_planner,
            save_conversation_path=save_conversation_path,
            save_conversation_path_encoding=save_conversation_path_encoding,
            max_failures=max_failures,
            retry_delay=retry_delay,
            system_prompt_class=system_prompt_class,
            max_input_tokens=max_input_tokens,
            validate_output=validate_output,
            message_context=message_context,
            generate_gif=generate_gif,
            available_file_paths=available_file_paths,
            include_attributes=include_attributes,
            max_actions_per_step=max_actions_per_step,
            tool_calling_method=tool_calling_method,
            page_extraction_llm=page_extraction_llm,
            planner_llm=planner_llm,
            planner_interval=planner_interval,
            injected_agent_state=injected_agent_state,
            context=context,
        )
        self.state = injected_agent_state or CustomAgentState()
        self.add_infos = add_infos
        self._message_manager = CustomMessageManager(
            task=task,
            system_message=self.settings.system_prompt_class(
                self.available_actions,
                max_actions_per_step=self.settings.max_actions_per_step,
            ).get_system_message(),
            settings=CustomMessageManagerSettings(
                max_input_tokens=self.settings.max_input_tokens,
                include_attributes=self.settings.include_attributes,
                message_context=self.settings.message_context,
                sensitive_data=sensitive_data,
                available_file_paths=self.settings.available_file_paths,
                agent_prompt_class=agent_prompt_class
            ),
            state=self.state.message_manager_state,
        )

    def _log_response(self, response: CustomAgentOutput) -> None:
        """Log the model's response"""
        if "Success" in response.current_state.evaluation_previous_goal:
            emoji = "βœ…"
        elif "Failed" in response.current_state.evaluation_previous_goal:
            emoji = "❌"
        else:
            emoji = "🀷"

        logger.info(f"{emoji} Eval: {response.current_state.evaluation_previous_goal}")
        logger.info(f"🧠 New Memory: {response.current_state.important_contents}")
        logger.info(f"πŸ€” Thought: {response.current_state.thought}")
        logger.info(f"🎯 Next Goal: {response.current_state.next_goal}")
        for i, action in enumerate(response.action):
            logger.info(
                f"πŸ› οΈ  Action {i + 1}/{len(response.action)}: {action.model_dump_json(exclude_unset=True)}"
            )

    def _setup_action_models(self) -> None:
        """Setup dynamic action models from controller's registry"""
        # Get the dynamic action model from controller's registry
        self.ActionModel = self.controller.registry.create_action_model()
        # Create output model with the dynamic actions
        self.AgentOutput = CustomAgentOutput.type_with_custom_actions(self.ActionModel)

    def update_step_info(

            self, model_output: CustomAgentOutput, step_info: CustomAgentStepInfo = None

    ):
        """

        update step info

        """
        if step_info is None:
            return

        step_info.step_number += 1
        important_contents = model_output.current_state.important_contents
        if (
                important_contents
                and "None" not in important_contents
                and important_contents not in step_info.memory
        ):
            step_info.memory += important_contents + "\n"

        logger.info(f"🧠 All Memory: \n{step_info.memory}")

    @time_execution_async("--get_next_action")
    async def get_next_action(self, input_messages: list[BaseMessage]) -> AgentOutput:
        """Get next action from LLM based on current state"""
        fixed_input_messages = self._convert_input_messages(input_messages)
        ai_message = self.llm.invoke(fixed_input_messages)
        self.message_manager._add_message_with_tokens(ai_message)

        if hasattr(ai_message, "reasoning_content"):
            logger.info("🀯 Start Deep Thinking: ")
            logger.info(ai_message.reasoning_content)
            logger.info("🀯 End Deep Thinking")

        if isinstance(ai_message.content, list):
            ai_content = ai_message.content[0]
        else:
            ai_content = ai_message.content

        try:
            ai_content = ai_content.replace("```json", "").replace("```", "")
            ai_content = repair_json(ai_content)
            parsed_json = json.loads(ai_content)
            parsed: AgentOutput = self.AgentOutput(**parsed_json)
        except Exception as e:
            import traceback
            traceback.print_exc()
            logger.debug(ai_message.content)
            raise ValueError('Could not parse response.')

        if parsed is None:
            logger.debug(ai_message.content)
            raise ValueError('Could not parse response.')

        # cut the number of actions to max_actions_per_step if needed
        if len(parsed.action) > self.settings.max_actions_per_step:
            parsed.action = parsed.action[: self.settings.max_actions_per_step]
        self._log_response(parsed)
        return parsed

    async def _run_planner(self) -> Optional[str]:
        """Run the planner to analyze state and suggest next steps"""
        # Skip planning if no planner_llm is set
        if not self.settings.planner_llm:
            return None

        # Create planner message history using full message history
        planner_messages = [
            PlannerPrompt(self.controller.registry.get_prompt_description()).get_system_message(),
            *self.message_manager.get_messages()[1:],  # Use full message history except the first
        ]

        if not self.settings.use_vision_for_planner and self.settings.use_vision:
            last_state_message: HumanMessage = planner_messages[-1]
            # remove image from last state message
            new_msg = ''
            if isinstance(last_state_message.content, list):
                for msg in last_state_message.content:
                    if msg['type'] == 'text':
                        new_msg += msg['text']
                    elif msg['type'] == 'image_url':
                        continue
            else:
                new_msg = last_state_message.content

            planner_messages[-1] = HumanMessage(content=new_msg)

        # Get planner output
        response = await self.settings.planner_llm.ainvoke(planner_messages)
        plan = str(response.content)
        last_state_message = self.message_manager.get_messages()[-1]
        if isinstance(last_state_message, HumanMessage):
            # remove image from last state message
            if isinstance(last_state_message.content, list):
                for msg in last_state_message.content:
                    if msg['type'] == 'text':
                        msg['text'] += f"\nPlanning Agent outputs plans:\n {plan}\n"
            else:
                last_state_message.content += f"\nPlanning Agent outputs plans:\n {plan}\n "

        try:
            plan_json = json.loads(plan.replace("```json", "").replace("```", ""))
            logger.info(f'πŸ“‹ Plans:\n{json.dumps(plan_json, indent=4)}')

            if hasattr(response, "reasoning_content"):
                logger.info("🀯 Start Planning Deep Thinking: ")
                logger.info(response.reasoning_content)
                logger.info("🀯 End Planning Deep Thinking")

        except json.JSONDecodeError:
            logger.info(f'πŸ“‹ Plans:\n{plan}')
        except Exception as e:
            logger.debug(f'Error parsing planning analysis: {e}')
            logger.info(f'πŸ“‹ Plans: {plan}')
        return plan

    @time_execution_async("--step")
    async def step(self, step_info: Optional[CustomAgentStepInfo] = None) -> None:
        """Execute one step of the task"""
        logger.info(f"\nπŸ“ Step {self.state.n_steps}")
        state = None
        model_output = None
        result: list[ActionResult] = []
        step_start_time = time.time()
        tokens = 0

        try:
            state = await self.browser_context.get_state()
            await self._raise_if_stopped_or_paused()

            self.message_manager.add_state_message(state, self.state.last_action, self.state.last_result, step_info,
                                                   self.settings.use_vision)

            # Run planner at specified intervals if planner is configured
            if self.settings.planner_llm and self.state.n_steps % self.settings.planner_interval == 0:
                await self._run_planner()
            input_messages = self.message_manager.get_messages()
            tokens = self._message_manager.state.history.current_tokens

            try:
                model_output = await self.get_next_action(input_messages)
                self.update_step_info(model_output, step_info)
                self.state.n_steps += 1

                if self.register_new_step_callback:
                    await self.register_new_step_callback(state, model_output, self.state.n_steps)

                if self.settings.save_conversation_path:
                    target = self.settings.save_conversation_path + f'_{self.state.n_steps}.txt'
                    save_conversation(input_messages, model_output, target,
                                      self.settings.save_conversation_path_encoding)

                if self.model_name != "deepseek-reasoner":
                    # remove prev message
                    self.message_manager._remove_state_message_by_index(-1)
                await self._raise_if_stopped_or_paused()
            except Exception as e:
                # model call failed, remove last state message from history
                self.message_manager._remove_state_message_by_index(-1)
                raise e

            result: list[ActionResult] = await self.multi_act(model_output.action)
            for ret_ in result:
                if ret_.extracted_content and "Extracted page" in ret_.extracted_content:
                    # record every extracted page
                    if ret_.extracted_content[:100] not in self.state.extracted_content:
                        self.state.extracted_content += ret_.extracted_content
            self.state.last_result = result
            self.state.last_action = model_output.action
            if len(result) > 0 and result[-1].is_done:
                if not self.state.extracted_content:
                    self.state.extracted_content = step_info.memory
                result[-1].extracted_content = self.state.extracted_content
                logger.info(f"πŸ“„ Result: {result[-1].extracted_content}")

            self.state.consecutive_failures = 0

        except InterruptedError:
            logger.debug('Agent paused')
            self.state.last_result = [
                ActionResult(
                    error='The agent was paused - now continuing actions might need to be repeated',
                    include_in_memory=True
                )
            ]
            return

        except Exception as e:
            result = await self._handle_step_error(e)
            self.state.last_result = result

        finally:
            step_end_time = time.time()
            actions = [a.model_dump(exclude_unset=True) for a in model_output.action] if model_output else []
            self.telemetry.capture(
                AgentStepTelemetryEvent(
                    agent_id=self.state.agent_id,
                    step=self.state.n_steps,
                    actions=actions,
                    consecutive_failures=self.state.consecutive_failures,
                    step_error=[r.error for r in result if r.error] if result else ['No result'],
                )
            )
            if not result:
                return

            if state:
                metadata = StepMetadata(
                    step_number=self.state.n_steps,
                    step_start_time=step_start_time,
                    step_end_time=step_end_time,
                    input_tokens=tokens,
                )
                self._make_history_item(model_output, state, result, metadata)

    async def run(self, max_steps: int = 100) -> AgentHistoryList:
        """Execute the task with maximum number of steps"""
        try:
            self._log_agent_run()

            # Execute initial actions if provided
            if self.initial_actions:
                result = await self.multi_act(self.initial_actions, check_for_new_elements=False)
                self.state.last_result = result

            step_info = CustomAgentStepInfo(
                task=self.task,
                add_infos=self.add_infos,
                step_number=1,
                max_steps=max_steps,
                memory="",
            )

            for step in range(max_steps):
                # Check if we should stop due to too many failures
                if self.state.consecutive_failures >= self.settings.max_failures:
                    logger.error(f'❌ Stopping due to {self.settings.max_failures} consecutive failures')
                    break

                # Check control flags before each step
                if self.state.stopped:
                    logger.info('Agent stopped')
                    break

                while self.state.paused:
                    await asyncio.sleep(0.2)  # Small delay to prevent CPU spinning
                    if self.state.stopped:  # Allow stopping while paused
                        break

                await self.step(step_info)

                if self.state.history.is_done():
                    if self.settings.validate_output and step < max_steps - 1:
                        if not await self._validate_output():
                            continue

                    await self.log_completion()
                    break
            else:
                logger.info("❌ Failed to complete task in maximum steps")
                if not self.state.extracted_content:
                    self.state.history.history[-1].result[-1].extracted_content = step_info.memory
                else:
                    self.state.history.history[-1].result[-1].extracted_content = self.state.extracted_content

            return self.state.history

        finally:
            self.telemetry.capture(
                AgentEndTelemetryEvent(
                    agent_id=self.state.agent_id,
                    is_done=self.state.history.is_done(),
                    success=self.state.history.is_successful(),
                    steps=self.state.n_steps,
                    max_steps_reached=self.state.n_steps >= max_steps,
                    errors=self.state.history.errors(),
                    total_input_tokens=self.state.history.total_input_tokens(),
                    total_duration_seconds=self.state.history.total_duration_seconds(),
                )
            )

            if not self.injected_browser_context:
                await self.browser_context.close()

            if not self.injected_browser and self.browser:
                await self.browser.close()

            if self.settings.generate_gif:
                output_path: str = 'agent_history.gif'
                if isinstance(self.settings.generate_gif, str):
                    output_path = self.settings.generate_gif

                create_history_gif(task=self.task, history=self.state.history, output_path=output_path)