File size: 6,445 Bytes
5e5249d
 
 
 
f7fb6bc
5e5249d
 
3080342
5e5249d
f7fb6bc
5e5249d
d816a8a
5e5249d
f7fb6bc
 
dd0c774
 
 
5e5249d
dd0c774
f7fb6bc
d816a8a
 
 
 
 
 
 
 
 
 
bb12293
 
d816a8a
 
bb12293
d816a8a
 
 
 
 
 
 
 
 
bb12293
 
f492dde
d816a8a
 
f492dde
bb12293
dd0c774
5e5249d
bb12293
 
 
 
 
 
 
5e5249d
 
bb12293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5249d
f7fb6bc
dd0c774
5e5249d
 
 
 
 
dd0c774
5e5249d
 
 
 
 
dd0c774
 
5e5249d
 
dd0c774
5e5249d
 
 
f7fb6bc
5e5249d
 
 
 
f7fb6bc
bb12293
d816a8a
 
 
bb12293
 
d816a8a
 
bb12293
 
 
 
 
 
 
 
d816a8a
bb12293
 
 
d816a8a
 
 
bb12293
 
 
 
 
f7fb6bc
5e5249d
 
dd0c774
d816a8a
 
 
 
 
 
 
 
 
bb12293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d816a8a
bb12293
 
f7fb6bc
e997b79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = """\
Shakti is a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service.
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Model configurations
model_options = {
    "Shakti-100M": "SandLogicTechnologies/Shakti-100M",
    "Shakti-250M": "SandLogicTechnologies/Shakti-250M",
    "Shakti-2.5B": "SandLogicTechnologies/Shakti-2.5B"
}

# Initialize tokenizer and model variables
tokenizer = None
model = None
current_model = "Shakti-2.5B"  # Keep track of current model


def load_model(selected_model: str):
    global tokenizer, model, current_model
    model_id = model_options[selected_model]
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        torch_dtype=torch.bfloat16,
        token=os.getenv("SHAKTI")
    )
    model.eval()
    current_model = selected_model  # Update the current model


# Initial model load (default to 2.5B)
load_model("Shakti-2.5B")


@spaces.GPU(duration=90)
def generate(
        message: str,
        chat_history: list[tuple[str, str]],
        max_new_tokens: int = 1024,
        temperature: float = 0.6,
        top_p: float = 0.9,
        top_k: int = 50,
        repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []

    # Conditional logic for adding prompt based on model
    if current_model == "Shakti-2.5B":
        for user, assistant in chat_history:
            conversation.extend(
                [
                    json.loads(os.getenv("PROMPT")),
                    {"role": "user", "content": user},
                    {"role": "assistant", "content": assistant},
                ]
            )
    else:
        for user, assistant in chat_history:
            conversation.extend(
                [
                    {"role": "user", "content": user},
                    {"role": "assistant", "content": assistant},
                ]
            )

    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


def update_examples(selected_model):
    if selected_model == "Shakti-100M":
        return [["Tell me a story"],
                ["Write a short poem on Rose"],
                ["What are computers"]]
    elif selected_model == "Shakti-250M":
        return [["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"],
                ["What are the potential side effects of beta-blockers in the treatment of arrhythmias?"],
                ["What foods are good for boosting the immune system?"],
                ["What is the difference between a stock and a bond?"],
                ["How can I start saving for retirement?"],
                ["What are some low-risk investment options?"],
                ["What is a power of attorney and when is it used?"],
                ["What are the key differences between a will and a trust?"],
                ["How do I legally protect my business name?"]]
    else:
        return [["Tell me a story"], ["write a short poem which is hard to sing"],
                ['मुझे भारतीय इतिहास के बारे में बताएं']]


def on_model_select(selected_model):
    load_model(selected_model)  # Load the selected model
    examples = update_examples(selected_model)  # Update examples
    return gr.update(examples=examples), gr.update(value=[])  # Clear the chat space and update examples


chat_history = gr.Chatbot()

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")

    # Dropdown for model selection
    model_dropdown = gr.Dropdown(
        label="Select Model",
        choices=["Shakti-100M", "Shakti-250M", "Shakti-2.5B"],
        value="Shakti-2.5B",
        interactive=True,
    )

    # Create the interface with dynamic inputs and chat history
    max_tokens_slider = gr.Slider(
        label="Max new tokens",
        minimum=1,
        maximum=MAX_MAX_NEW_TOKENS,
        step=1,
        value=DEFAULT_MAX_NEW_TOKENS,
    )

    temperature_slider = gr.Slider(
        label="Temperature",
        minimum=0.1,
        maximum=4.0,
        step=0.1,
        value=0.6,
    )

    chat_interface = gr.Interface(
        fn=generate,
        inputs=[gr.Textbox(lines=2, placeholder="Enter your message here"), chat_history, max_tokens_slider,
                temperature_slider],
        outputs=chat_history,
        live=True,
    )

    # Function to handle model change and update examples dynamically
    model_dropdown.change(on_model_select, inputs=model_dropdown, outputs=[chat_interface, chat_history])

    demo.queue(max_size=20).launch()