File size: 9,633 Bytes
5e5249d
 
 
f7fb6bc
5e5249d
 
3080342
5e5249d
f7fb6bc
5e5249d
2e33ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fb6bc
 
dd0c774
 
 
5e5249d
dd0c774
f7fb6bc
d816a8a
 
 
 
 
 
 
 
 
 
bb12293
 
d816a8a
 
bb12293
d816a8a
 
 
 
 
 
 
 
 
2e33ec7
 
bb12293
f492dde
2e33ec7
d816a8a
f492dde
bb12293
5e5249d
bb12293
 
 
 
 
 
 
5e5249d
 
bb12293
 
 
2e33ec7
 
 
 
 
bb12293
 
2e33ec7
 
 
 
bb12293
5e5249d
f7fb6bc
dd0c774
5e5249d
 
 
 
 
dd0c774
5e5249d
 
 
 
 
dd0c774
 
5e5249d
 
dd0c774
5e5249d
 
 
f7fb6bc
5e5249d
 
 
 
f7fb6bc
bb12293
2e33ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb12293
d816a8a
 
 
2e33ec7
 
 
 
 
 
 
 
 
 
 
bb12293
 
2e33ec7
 
f7fb6bc
2e33ec7
 
5e5249d
d816a8a
2e33ec7
 
 
 
 
 
 
bb12293
2e33ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb12293
 
2e33ec7
 
 
 
bb12293
d816a8a
2e33ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7fb6bc
2e33ec7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = """\
Shakti LLMs (Large Language Models) are a group of compact language models specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT (Internet of Things) systems. These models provide support for vernacular languages and domain-specific tasks, making them particularly suitable for industries such as healthcare, finance, and customer service.
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1)
"""


# """\
# Shakti LLMs are a group of small language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service.
# For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
# """


# Custom CSS for the send button
CUSTOM_CSS = """
.send-btn {
    padding: 0.5rem !important;
    width: 55px !important;
    height: 55px !important;
    border-radius: 50% !important;
    margin-top: 1rem;
    cursor: pointer;
}

.send-btn svg {
    width: 20px !important;
    height: 20px !important;
    position: absolute;
    top: 50%;
    left: 50%;
    transform: translate(-50%, -50%);
}
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Model configurations
model_options = {
    "Shakti-100M": "SandLogicTechnologies/Shakti-100M",
    "Shakti-250M": "SandLogicTechnologies/Shakti-250M",
    "Shakti-2.5B": "SandLogicTechnologies/Shakti-2.5B"
}

# Initialize tokenizer and model variables
tokenizer = None
model = None
current_model = "Shakti-2.5B"  # Keep track of current model


def load_model(selected_model: str):
    global tokenizer, model, current_model
    model_id = model_options[selected_model]
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        torch_dtype=torch.bfloat16,
        token=os.getenv("SHAKTI")
    )
    model.eval()
    print("Selected Model: ", selected_model)
    current_model = selected_model


# Initial model load
load_model("Shakti-2.5B")


def generate(
        message: str,
        chat_history: list[tuple[str, str]],
        max_new_tokens: int = 1024,
        temperature: float = 0.6,
        top_p: float = 0.9,
        top_k: int = 50,
        repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []

    if current_model == "Shakti-2.5B":
        for user, assistant in chat_history:
            conversation.extend([
                json.loads(os.getenv("PROMPT")),
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ])
    else:
        for user, assistant in chat_history:
            conversation.extend([
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ])

    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


def respond(message, chat_history, max_new_tokens, temperature):
    bot_message = ""
    for chunk in generate(message, chat_history, max_new_tokens, temperature):
        bot_message += chunk
    chat_history.append((message, bot_message))
    return "", chat_history


def get_examples(selected_model):
    examples = {
        "Shakti-100M": [
            ["Tell me a story"],
            ["Write a short poem on Rose"],
            ["What are computers"]
        ],
        "Shakti-250M": [
            ["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"],
            ["What are the potential side effects of beta-blockers in the treatment of arrhythmias?"],
            ["What foods are good for boosting the immune system?"],
            ["What is the difference between a stock and a bond?"],
            ["How can I start saving for retirement?"],
            ["What are some low-risk investment options?"]
        ],
        "Shakti-2.5B": [
            ["Tell me a story"],
            ["write a short poem which is hard to sing"],
            ['मुझे भारतीय इतिहास के बारे में बताएं']
        ]
    }
    return examples.get(selected_model, [])


def on_model_select(selected_model):
    load_model(selected_model)  # Load the selected model
    # Return the message and chat history updates
    return gr.update(value=""), gr.update(value=[])  # Clear message and chat history


def update_examples_visibility(selected_model):
    # Return individual updates for each example section
    return (
        gr.update(visible=selected_model == "Shakti-100M"),
        gr.update(visible=selected_model == "Shakti-250M"),
        gr.update(visible=selected_model == "Shakti-2.5B")
    )


def example_selector(example):
    return example


with gr.Blocks(css=CUSTOM_CSS) as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        model_dropdown = gr.Dropdown(
            label="Select Model",
            choices=list(model_options.keys()),
            value="Shakti-2.5B",
            interactive=True
        )

    chatbot = gr.Chatbot()

    with gr.Row():
        with gr.Column(scale=20):
            msg = gr.Textbox(
                label="Message",
                placeholder="Enter your message here",
                lines=2,
                show_label=False
            )
        with gr.Column(scale=1, min_width=50):
            send_btn = gr.Button(
                value="➤",
                variant="primary",
                elem_classes=["send-btn"]
            )

    with gr.Accordion("Parameters", open=False):
        max_tokens_slider = gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        )
        temperature_slider = gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        )

    # Add submit action handlers
    submit_click = send_btn.click(
        respond,
        inputs=[msg, chatbot, max_tokens_slider, temperature_slider],
        outputs=[msg, chatbot]
    )

    submit_enter = msg.submit(
        respond,
        inputs=[msg, chatbot, max_tokens_slider, temperature_slider],
        outputs=[msg, chatbot]
    )

    # Create separate example sections for each model
    with gr.Row():
        with gr.Column(visible=False) as examples_100m:
            gr.Examples(
                examples=get_examples("Shakti-100M"),
                inputs=msg,
                label="Example prompts for Shakti-100M",
                fn=example_selector
            )

        with gr.Column(visible=False) as examples_250m:
            gr.Examples(
                examples=get_examples("Shakti-250M"),
                inputs=msg,
                label="Example prompts for Shakti-250M",
                fn=example_selector
            )

        with gr.Column(visible=True) as examples_2_5b:
            gr.Examples(
                examples=get_examples("Shakti-2.5B"),
                inputs=msg,
                label="Example prompts for Shakti-2.5B",
                fn=example_selector
            )


        # Update model selection and examples visibility
        def combined_update(selected_model):
            msg_update, chat_update = on_model_select(selected_model)
            examples_100m_update, examples_250m_update, examples_2_5b_update = update_examples_visibility(
                selected_model)
            return [
                msg_update,
                chat_update,
                examples_100m_update,
                examples_250m_update,
                examples_2_5b_update
            ]


        # Updated change event handler
        model_dropdown.change(
            combined_update,
            inputs=[model_dropdown],
            outputs=[
                msg,
                chatbot,
                examples_100m,
                examples_250m,
                examples_2_5b
            ]
        )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()