Sanchit2207 commited on
Commit
02e32ba
·
verified ·
1 Parent(s): 837e676

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -63
app.py CHANGED
@@ -1,64 +1,55 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
2
  import gradio as gr
3
+ import torch
4
+
5
+ # Agent 1: Intent Classifier
6
+ intent_classifier = pipeline("text-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")
7
+
8
+ def detect_intent(text):
9
+ labels = {
10
+ "weather": "The user wants to know the weather.",
11
+ "faq": "The user is asking for help.",
12
+ "smalltalk": "The user is making casual conversation."
13
+ }
14
+ scores = {}
15
+ for label, hypothesis in labels.items():
16
+ result = intent_classifier({"premise": text, "hypothesis": hypothesis})[0]
17
+ scores[label] = result['score'] if result['label'] == 'ENTAILMENT' else 0
18
+ return max(scores, key=scores.get)
19
+
20
+ # Agent 2: Domain Logic
21
+ def handle_logic(intent):
22
+ if intent == "weather":
23
+ return "It’s currently sunny and 26°C."
24
+ elif intent == "faq":
25
+ return "Please click on 'Forgot Password' to reset it."
26
+ else:
27
+ return "Haha, that’s funny! Tell me more."
28
+
29
+ # Agent 3: NLG with DialoGPT
30
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
31
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
32
+
33
+ def generate_reply(text):
34
+ input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors='pt')
35
+ output = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id)
36
+ reply = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
37
+ return reply
38
+
39
+ # Combined chatbot
40
+ def chatbot(user_input):
41
+ intent = detect_intent(user_input)
42
+ logic = handle_logic(intent)
43
+ reply = generate_reply(logic)
44
+ return reply
45
+
46
+ # Gradio interface
47
+ uiface = gr.Interface(fn=chatbot,
48
+ inputs=gr.Textbox(lines=2, placeholder="Type your message..."),
49
+ outputs="text",
50
+ title="Three-Agent Hugging Face Chatbot",
51
+ description="Intent detection + domain logic + natural generation")
52
+
53
+ uiface.launch()
54
+
55
+