Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,55 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Agent 1: Intent Classifier
|
6 |
+
intent_classifier = pipeline("text-classification", model="MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli")
|
7 |
+
|
8 |
+
def detect_intent(text):
|
9 |
+
labels = {
|
10 |
+
"weather": "The user wants to know the weather.",
|
11 |
+
"faq": "The user is asking for help.",
|
12 |
+
"smalltalk": "The user is making casual conversation."
|
13 |
+
}
|
14 |
+
scores = {}
|
15 |
+
for label, hypothesis in labels.items():
|
16 |
+
result = intent_classifier({"premise": text, "hypothesis": hypothesis})[0]
|
17 |
+
scores[label] = result['score'] if result['label'] == 'ENTAILMENT' else 0
|
18 |
+
return max(scores, key=scores.get)
|
19 |
+
|
20 |
+
# Agent 2: Domain Logic
|
21 |
+
def handle_logic(intent):
|
22 |
+
if intent == "weather":
|
23 |
+
return "It’s currently sunny and 26°C."
|
24 |
+
elif intent == "faq":
|
25 |
+
return "Please click on 'Forgot Password' to reset it."
|
26 |
+
else:
|
27 |
+
return "Haha, that’s funny! Tell me more."
|
28 |
+
|
29 |
+
# Agent 3: NLG with DialoGPT
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
31 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
32 |
+
|
33 |
+
def generate_reply(text):
|
34 |
+
input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors='pt')
|
35 |
+
output = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id)
|
36 |
+
reply = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
37 |
+
return reply
|
38 |
+
|
39 |
+
# Combined chatbot
|
40 |
+
def chatbot(user_input):
|
41 |
+
intent = detect_intent(user_input)
|
42 |
+
logic = handle_logic(intent)
|
43 |
+
reply = generate_reply(logic)
|
44 |
+
return reply
|
45 |
+
|
46 |
+
# Gradio interface
|
47 |
+
uiface = gr.Interface(fn=chatbot,
|
48 |
+
inputs=gr.Textbox(lines=2, placeholder="Type your message..."),
|
49 |
+
outputs="text",
|
50 |
+
title="Three-Agent Hugging Face Chatbot",
|
51 |
+
description="Intent detection + domain logic + natural generation")
|
52 |
+
|
53 |
+
uiface.launch()
|
54 |
+
|
55 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|