import gradio as gr import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel # Initialize tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') # Create a function to generate text def generate_text(input_text): # Encode the input text input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate the output text output_ids = model.generate(input_ids, max_length=50, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1) # Decode the output text output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) return output_text # Create the interface gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Chat GPT").launch()