Chat-GPT / app.py
Samuelblue's picture
app.py
fe2c928
raw
history blame
743 Bytes
import gradio as gr
# Initialize tokenizer and model
import transformers
tokenizer = transformers.GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# Create a function to generate text
def generate_text(input_text):
# Encode the input text
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# Generate the output text
output_ids = model.generate(input_ids, max_length=50, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
# Decode the output text
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return output_text
# Create the interface
gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Chat GPT").launch()