import google.generativeai as genai import requests import numpy as np import faiss from sentence_transformers import SentenceTransformer from bs4 import BeautifulSoup import gradio as gr # Configure Gemini API key GOOGLE_API_KEY = 'AIzaSyA0yLvySmj8xjMd0sedSgklg1fj0wBDyyw' # Replace with your API key genai.configure(api_key=GOOGLE_API_KEY) # Fetch lecture notes and model architectures def fetch_lecture_notes(): lecture_urls = [ "https://stanford-cs324.github.io/winter2022/lectures/introduction/", "https://stanford-cs324.github.io/winter2022/lectures/capabilities/", "https://stanford-cs324.github.io/winter2022/lectures/data/", "https://stanford-cs324.github.io/winter2022/lectures/modeling/" ] lecture_texts = [] for url in lecture_urls: response = requests.get(url) if response.status_code == 200: print(f"Fetched content from {url}") lecture_texts.append((extract_text_from_html(response.text), url)) else: print(f"Failed to fetch content from {url}, status code: {response.status_code}") return lecture_texts def fetch_model_architectures(): url = "https://github.com/Hannibal046/Awesome-LLM#milestone-papers" response = requests.get(url) if response.status_code == 200: print(f"Fetched model architectures, status code: {response.status_code}") return extract_text_from_html(response.text), url else: print(f"Failed to fetch model architectures, status code: {response.status_code}") return "", url # Extract text from HTML content def extract_text_from_html(html_content): soup = BeautifulSoup(html_content, 'html.parser') for script in soup(["script", "style"]): script.extract() text = soup.get_text(separator="\n", strip=True) return text # Generate embeddings using SentenceTransformers def create_embeddings(texts, model): texts_only = [text for text, _ in texts] embeddings = model.encode(texts_only) return embeddings # Initialize FAISS index def initialize_faiss_index(embeddings): dimension = embeddings.shape[1] # Assuming all embeddings have the same dimension index = faiss.IndexFlatL2(dimension) index.add(embeddings.astype('float32')) return index # Handle natural language queries conversation_history = [] def handle_query(query, faiss_index, embeddings_texts, model): global conversation_history query_embedding = model.encode([query]).astype('float32') # Search FAISS index _, indices = faiss_index.search(query_embedding, 3) # Retrieve top 3 results relevant_texts = [embeddings_texts[idx] for idx in indices[0]] # Combine relevant texts and truncate if necessary combined_text = "\n".join([text for text, _ in relevant_texts]) max_length = 500 # Adjust as necessary if len(combined_text) > max_length: combined_text = combined_text[:max_length] + "..." # Generate a response using Gemini try: response = genai.generate_text( model="models/text-bison-001", prompt=f"Based on the following context:\n\n{combined_text}\n\nAnswer the following question: {query}", max_output_tokens=200 ) generated_text = response.result except Exception as e: print(f"Error generating text: {e}") generated_text = "An error occurred while generating the response." # Update conversation history conversation_history.append(f"User: {query}") conversation_history.append(f"System: {generated_text}") # Extract sources sources = [url for _, url in relevant_texts] return generated_text, sources def generate_concise_response(prompt, context): try: response = genai.generate_text( model="models/text-bison-001", prompt=f"{prompt}\n\nContext: {context}\n\nAnswer:", max_output_tokens=200 ) return response.result except Exception as e: print(f"Error generating concise response: {e}") return "An error occurred while generating the concise response." # Main function to execute the pipeline def chatbot(message, history): lecture_notes = fetch_lecture_notes() model_architectures = fetch_model_architectures() all_texts = lecture_notes + [model_architectures] # Load the SentenceTransformers model embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') embeddings = create_embeddings(all_texts, embedding_model) # Initialize FAISS index faiss_index = initialize_faiss_index(np.array(embeddings)) response, sources = handle_query(message, faiss_index, all_texts, embedding_model) print("Query:", message) print("Response:", response) total_text = response if sources: print("Sources:", sources) relevant_source = "" for source in sources: relevant_source += source + "\n" total_text += "\n\nSources:\n" + relevant_source else: print("Sources: None of the provided sources were used.") print("----") # Generate a concise and relevant summary using Gemini prompt = "Summarize the user queries so far" user_queries_summary = " ".join(message) concise_response = generate_concise_response(prompt, user_queries_summary) print("Concise Response:") print(concise_response) return total_text iface = gr.Interface( fn=chatbot, inputs="text", outputs="text", title="LLM Research Assistant", description="Ask questions about LLM architectures, datasets, and training techniques.", examples=[ ["What are some milestone model architectures in LLMs?"], ["Explain the transformer architecture."], ["Tell me about datasets used to train LLMs."], ["How are LLM training datasets cleaned and preprocessed?"], ["Summarize the user queries so far"] ], allow_flagging="never" ) if __name__ == "__main__": iface.launch(server_name="0.0.0.0", server_port=7860)