gemini-test / app.py
Sambhavnoobcoder's picture
Claude updates stuff
263fd54 verified
raw
history blame
4.72 kB
import google.generativeai as genai
import requests
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from bs4 import BeautifulSoup
import gradio as gr
import os
# Configure Gemini API key
GOOGLE_API_KEY = 'AIzaSyA0yLvySmj8xjMd0sedSgklg1fj0wBDyyw' # Replace with your API key
genai.configure(api_key=GOOGLE_API_KEY)
# Fetch lecture notes and model architectures
def fetch_lecture_notes():
lecture_urls = [
"https://stanford-cs324.github.io/winter2022/lectures/introduction/",
"https://stanford-cs324.github.io/winter2022/lectures/capabilities/",
"https://stanford-cs324.github.io/winter2022/lectures/data/",
"https://stanford-cs324.github.io/winter2022/lectures/modeling/"
]
lecture_texts = []
for url in lecture_urls:
response = requests.get(url)
if response.status_code == 200:
print(f"Fetched content from {url}")
lecture_texts.append((extract_text_from_html(response.text), url))
else:
print(f"Failed to fetch content from {url}, status code: {response.status_code}")
return lecture_texts
def fetch_model_architectures():
url = "https://github.com/Hannibal046/Awesome-LLM#milestone-papers"
response = requests.get(url)
if response.status_code == 200:
print(f"Fetched model architectures, status code: {response.status_code}")
return extract_text_from_html(response.text), url
else:
print(f"Failed to fetch model architectures, status code: {response.status_code}")
return "", url
# Extract text from HTML content
def extract_text_from_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text(separator="\n", strip=True)
return text
# Generate embeddings using SentenceTransformers
def create_embeddings(texts, model):
texts_only = [text for text, _ in texts]
embeddings = model.encode(texts_only)
return embeddings
# Initialize FAISS index
def initialize_faiss_index(embeddings):
dimension = embeddings.shape[1] # Assuming all embeddings have the same dimension
index = faiss.IndexFlatL2(dimension)
index.add(embeddings.astype('float32'))
return index
# Handle natural language queries
conversation_history = []
# Global variables
lecture_notes = fetch_lecture_notes()
model_architectures = fetch_model_architectures()
all_texts = lecture_notes + [model_architectures]
embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
embeddings = create_embeddings(all_texts, embedding_model)
faiss_index = initialize_faiss_index(np.array(embeddings))
def handle_query(query, faiss_index, embeddings_texts, model):
query_embedding = model.encode([query]).astype('float32')
_, indices = faiss_index.search(query_embedding, 3)
relevant_texts = [embeddings_texts[idx] for idx in indices[0]]
combined_text = "\n".join([text for text, _ in relevant_texts])
max_length = 500
if len(combined_text) > max_length:
combined_text = combined_text[:max_length] + "..."
try:
response = genai.generate_text(
model="models/text-bison-001",
prompt=f"Based on the following context:\n\n{combined_text}\n\nAnswer the following question: {query}",
max_output_tokens=200
)
generated_text = response.result if response else "No response generated."
except Exception as e:
generated_text = f"An error occurred while generating the response: {str(e)}"
sources = [url for _, url in relevant_texts]
return generated_text, sources
def chatbot(message, history):
response, sources = handle_query(message, faiss_index, all_texts, embedding_model)
total_text = response if response else "No response generated."
if sources:
relevant_source = "\n".join(sources)
total_text += f"\n\nSources:\n{relevant_source}"
history.append((message, total_text))
return history
iface = gr.ChatInterface(
chatbot,
title="LLM Research Assistant",
description="Ask questions about LLM architectures, datasets, and training techniques.",
examples=[
"What are some milestone model architectures in LLMs?",
"Explain the transformer architecture.",
"Tell me about datasets used to train LLMs.",
"How are LLM training datasets cleaned and preprocessed?",
],
retry_btn="Regenerate",
undo_btn="Undo",
clear_btn="Clear",
cache_examples=False, # Disable example caching to avoid file-related errors
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)