Spaces:
Runtime error
Runtime error
Commit
·
6040e4c
1
Parent(s):
b7a8ef6
adding LLM On doc using on-prem Hugging face models
Browse files- app.py +194 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain import HuggingFaceHub
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
12 |
+
|
13 |
+
|
14 |
+
DEVICE = 'cpu'
|
15 |
+
FILE_EXT = ['pdf','text','csv','word']
|
16 |
+
DEFAULT_SYSTEM_PROMPT = "As a chatbot you are answering set of questions being requested ."
|
17 |
+
MAX_NEW_TOKENS = 4096
|
18 |
+
DEFAULT_TEMPERATURE = 0.1
|
19 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
20 |
+
MAX_INPUT_TOKEN_LENGTH = 4000
|
21 |
+
|
22 |
+
def loading_file():
|
23 |
+
return "Loading..."
|
24 |
+
|
25 |
+
|
26 |
+
def process_documents(documents,data_chunk=1500,chunk_overlap=100):
|
27 |
+
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
|
28 |
+
texts = text_splitter.split_documents(documents)
|
29 |
+
return texts
|
30 |
+
|
31 |
+
def get_hugging_face_model(model_id,temperature=0.1,max_tokens=4096,API_key=None):
|
32 |
+
chat_llm = HuggingFacePipeline.from_model_id(
|
33 |
+
model_id=model_id,
|
34 |
+
task="text-generation",
|
35 |
+
pipeline_kwargs={"max_new_tokens": max_tokens,"temperature": temperature,},
|
36 |
+
)
|
37 |
+
# chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key,
|
38 |
+
# repo_id=model_id,
|
39 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens})
|
40 |
+
return chat_llm
|
41 |
+
|
42 |
+
def chat_application(temperature=0.1, max_tokens=1024):
|
43 |
+
|
44 |
+
llm = get_hugging_face_model(model_id='tiiuae/falcon-7b-instruct',temperature=temperature, max_tokens=max_tokens)
|
45 |
+
return llm
|
46 |
+
|
47 |
+
|
48 |
+
def document_loader(file_path,doc_type='pdf',temperature=0.1,max_tokens=2048):
|
49 |
+
document = None
|
50 |
+
if doc_type == 'pdf':
|
51 |
+
document = process_pdf_document(document_file=file_path)
|
52 |
+
elif doc_type == 'text':
|
53 |
+
document = process_text_document(document_file=file_path)
|
54 |
+
elif doc_type == 'csv':
|
55 |
+
document = process_csv_document(document_file=file_path)
|
56 |
+
elif doc_type == 'word':
|
57 |
+
document = process_word_document(document_file=file_path)
|
58 |
+
|
59 |
+
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
|
60 |
+
|
61 |
+
texts = process_documents(documents=document)
|
62 |
+
global vector_db
|
63 |
+
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
|
64 |
+
global qa
|
65 |
+
qa = RetrievalQA.from_chain_type(llm=chat_application(temperature=temperature,
|
66 |
+
max_tokens=max_tokens
|
67 |
+
),
|
68 |
+
chain_type='stuff',
|
69 |
+
retriever=vector_db.as_retriever(),
|
70 |
+
# chain_type_kwargs=chain_type_kwargs,
|
71 |
+
return_source_documents=True
|
72 |
+
)
|
73 |
+
return "Document Processing completed ..."
|
74 |
+
|
75 |
+
def process_text_document(document_file):
|
76 |
+
loader = TextLoader(document_file.name)
|
77 |
+
document = loader.load()
|
78 |
+
return document
|
79 |
+
|
80 |
+
def process_csv_document(document_file):
|
81 |
+
loader = CSVLoader(file_path=document_file.name)
|
82 |
+
document = loader.load()
|
83 |
+
return document
|
84 |
+
|
85 |
+
def process_word_document(document_file):
|
86 |
+
loader = UnstructuredWordDocumentLoader(file_path=document_file.name)
|
87 |
+
document = loader.load()
|
88 |
+
return document
|
89 |
+
|
90 |
+
def process_pdf_document(document_file):
|
91 |
+
print("Document File Name :",document_file.name)
|
92 |
+
loader = PDFMinerLoader(document_file.name)
|
93 |
+
document = loader.load()
|
94 |
+
return document
|
95 |
+
|
96 |
+
def clear_chat():
|
97 |
+
return []
|
98 |
+
|
99 |
+
def infer(question, history):
|
100 |
+
# res = []
|
101 |
+
# # for human, ai in history[:-1]:
|
102 |
+
# # pair = (human, ai)
|
103 |
+
# # res.append(pair)
|
104 |
+
|
105 |
+
# chat_history = res
|
106 |
+
print("Question in infer :",question)
|
107 |
+
result = qa({"query": question})
|
108 |
+
matching_docs_score = vector_db.similarity_search_with_score(question)
|
109 |
+
|
110 |
+
print(" Matching_doc ",matching_docs_score)
|
111 |
+
|
112 |
+
return result["result"]
|
113 |
+
|
114 |
+
def bot(history):
|
115 |
+
|
116 |
+
response = infer(history[-1][0], history)
|
117 |
+
history[-1][1] = ""
|
118 |
+
|
119 |
+
for character in response:
|
120 |
+
history[-1][1] += character
|
121 |
+
time.sleep(0.05)
|
122 |
+
yield history
|
123 |
+
|
124 |
+
def add_text(history, text):
|
125 |
+
history = history + [(text, None)]
|
126 |
+
return history, ""
|
127 |
+
|
128 |
+
css="""
|
129 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
130 |
+
"""
|
131 |
+
|
132 |
+
title = """
|
133 |
+
<div style="text-align: center;max-width: 700px;">
|
134 |
+
<h1>Chat with Data • OpenAI/HuggingFace</h1>
|
135 |
+
<p style="text-align: center;">Upload a file from system,UpLoad file and generate embeddings, <br />
|
136 |
+
once status is ready, you can start asking questions about the data you uploaded without chat history <br />
|
137 |
+
and gives you option to use HuggingFace/OpenAI as LLM's, make sure to add your key.
|
138 |
+
</p>
|
139 |
+
</div>
|
140 |
+
"""
|
141 |
+
|
142 |
+
with gr.Blocks(css=css) as demo:
|
143 |
+
with gr.Column(elem_id="col-container"):
|
144 |
+
gr.HTML(title)
|
145 |
+
|
146 |
+
with gr.Group():
|
147 |
+
chatbot = gr.Chatbot(height=300)
|
148 |
+
with gr.Row():
|
149 |
+
question = gr.Textbox(label="Type your question !",lines=1)
|
150 |
+
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
|
151 |
+
clean_chat_btn = gr.Button("Delete Chat")
|
152 |
+
|
153 |
+
with gr.Column():
|
154 |
+
with gr.Box():
|
155 |
+
LLM_option = gr.Dropdown(['tiiuae/falcon-7b-instruct'],label='Large Language Model Selection',info='LLM Service')
|
156 |
+
|
157 |
+
with gr.Column():
|
158 |
+
with gr.Box():
|
159 |
+
file_extension = gr.Dropdown(FILE_EXT, label="File Extensions", info="Select type of file to upload !")
|
160 |
+
pdf_doc = gr.File(label="Upload File to start QA", file_types=FILE_EXT, type="file")
|
161 |
+
with gr.Accordion(label='Advanced options', open=False):
|
162 |
+
max_new_tokens = gr.Slider(
|
163 |
+
label='Max new tokens',
|
164 |
+
minimum=2048,
|
165 |
+
maximum=MAX_NEW_TOKENS,
|
166 |
+
step=1024,
|
167 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
168 |
+
)
|
169 |
+
temperature = gr.Slider(
|
170 |
+
label='Temperature',
|
171 |
+
minimum=0.1,
|
172 |
+
maximum=4.0,
|
173 |
+
step=0.1,
|
174 |
+
value=DEFAULT_TEMPERATURE,
|
175 |
+
)
|
176 |
+
with gr.Row():
|
177 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
|
178 |
+
load_pdf = gr.Button("Upload File & Generate Embeddings",).style(full_width = False)
|
179 |
+
|
180 |
+
# chatbot = gr.Chatbot()l̥
|
181 |
+
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
|
182 |
+
# submit_button = gr.Button("Send Message")
|
183 |
+
|
184 |
+
if pdf_doc:
|
185 |
+
load_pdf.click(loading_file, None, langchain_status, queue=False)
|
186 |
+
load_pdf.click(document_loader, inputs=[pdf_doc,file_extension,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
|
187 |
+
|
188 |
+
question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
189 |
+
submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
|
190 |
+
# submit_btn.then(chatf.highlight_found_text, [chatbot, sources], [sources])
|
191 |
+
clean_chat_btn.click(clear_chat, [], chatbot)
|
192 |
+
|
193 |
+
|
194 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
tiktoken
|
3 |
+
chromadb
|
4 |
+
langchain
|
5 |
+
unstructured
|
6 |
+
unstructured[local-inference]
|
7 |
+
transformers
|
8 |
+
torch
|
9 |
+
faiss-cpu
|
10 |
+
sentence-transformers
|
11 |
+
chromadb
|