Spaces:
Sleeping
Sleeping
Commit
·
c850a01
1
Parent(s):
428e149
added image detection code to display predicted bboxes
Browse files- QA_bot.py +1 -1
- extract_tools.py +3 -2
- tool_utils/yolo_world.py +2 -2
QA_bot.py
CHANGED
@@ -44,7 +44,7 @@ def tyre_synap_bot(filter_agent,image_file_path):
|
|
44 |
with st.chat_message("assistant"):
|
45 |
message_placeholder = st.empty()
|
46 |
full_response = ""
|
47 |
-
if 'mask' in ai_response['output']:
|
48 |
display_mask_image('final_mask.png')
|
49 |
|
50 |
for chunk in re.split(r'(\s+)', response):
|
|
|
44 |
with st.chat_message("assistant"):
|
45 |
message_placeholder = st.empty()
|
46 |
full_response = ""
|
47 |
+
if 'mask' in ai_response['output'] or 'predicted_image' in ai_response['output']:
|
48 |
display_mask_image('final_mask.png')
|
49 |
|
50 |
for chunk in re.split(r'(\s+)', response):
|
extract_tools.py
CHANGED
@@ -44,7 +44,7 @@ def get_groq_model(model_name = "gemma2-9b-it"):
|
|
44 |
def panoptic_image_segemntation(image_path:str)->str:
|
45 |
"""
|
46 |
The tool is used to create a Panoptic segmentation mask . It uses Maskformer network to create a panoptic segmentation of all \
|
47 |
-
the objects present in the image . Use the tool in case user ask to create a panoptic segmentation.
|
48 |
"""
|
49 |
if image_path.startswith('https'):
|
50 |
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
@@ -240,7 +240,8 @@ def get_all_tools():
|
|
240 |
func = panoptic_image_segemntation,
|
241 |
description = "The tool is used to create a Panoptic segmentation mask . It uses Maskformer network to create a panoptic segmentation of all \
|
242 |
the objects present in the image . Use the tool in case user ask to create a panoptic segmentation or count objects in the image.\
|
243 |
-
The tool also provides a list of objects along with the mask image of the all segmented objects found in the image
|
|
|
244 |
)
|
245 |
|
246 |
tools = [
|
|
|
44 |
def panoptic_image_segemntation(image_path:str)->str:
|
45 |
"""
|
46 |
The tool is used to create a Panoptic segmentation mask . It uses Maskformer network to create a panoptic segmentation of all \
|
47 |
+
the objects present in the image . Use the tool in case user ask to create a panoptic image segmentation or panoptic mask .
|
48 |
"""
|
49 |
if image_path.startswith('https'):
|
50 |
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
|
|
|
240 |
func = panoptic_image_segemntation,
|
241 |
description = "The tool is used to create a Panoptic segmentation mask . It uses Maskformer network to create a panoptic segmentation of all \
|
242 |
the objects present in the image . Use the tool in case user ask to create a panoptic segmentation or count objects in the image.\
|
243 |
+
The tool also provides a list of objects along with the mask image of the all segmented objects found in the image .\
|
244 |
+
Us the tool if user ask to create a panoptic image segmentation or panoptic mask"
|
245 |
)
|
246 |
|
247 |
tools = [
|
tool_utils/yolo_world.py
CHANGED
@@ -78,6 +78,6 @@ class YoloWorld:
|
|
78 |
boxes=processed_predictions[0]['boxes'],
|
79 |
labels=processed_predictions[0]['labels']
|
80 |
)
|
81 |
-
cv2.imwrite('final_mask.
|
82 |
-
return "Predicted image : final_mask.jpg . Details :{}".format(processed_predictions[0])
|
83 |
|
|
|
78 |
boxes=processed_predictions[0]['boxes'],
|
79 |
labels=processed_predictions[0]['labels']
|
80 |
)
|
81 |
+
cv2.imwrite('final_mask.png',detected_image)
|
82 |
+
return "Predicted image mask : final_mask.jpg . Details :{}".format(processed_predictions[0])
|
83 |
|