SaiKumar1627 commited on
Commit
eaed23e
·
verified ·
1 Parent(s): 62ac4ab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -88
app.py CHANGED
@@ -1,92 +1,23 @@
1
- import requests
2
- from bs4 import BeautifulSoup
3
  import pandas as pd
4
- import time
5
 
6
- class URLValidator:
7
- """
8
- A production-ready URL validation class that evaluates the credibility of a webpage
9
- using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations.
10
- """
11
-
12
- def __init__(self):
13
- pass # No external models used in this simplified version
14
-
15
- def fetch_page_content(self, url: str) -> str:
16
- """ Fetches and extracts text content from the given URL. """
17
- try:
18
- response = requests.get(url, timeout=10)
19
- response.raise_for_status()
20
- soup = BeautifulSoup(response.text, "html.parser")
21
- return " ".join([p.text for p in soup.find_all("p")])
22
- except requests.RequestException as e:
23
- print(f"Error fetching URL: {url} - {e}")
24
- return ""
25
-
26
- def get_domain_trust(self, url: str) -> int:
27
- """ Simulated function to assess domain trust. """
28
- return (len(url) % 5) + 1 # Mock domain trust rating (1-5)
29
-
30
- def compute_similarity_score(self, user_query: str, content: str) -> int:
31
- """ Simulated function to compute similarity between user query and content. """
32
- if not content:
33
- return 1 # If no content, assign lowest rating
34
- return (len(user_query) % 5) + 1 # Mock similarity rating (1-5)
35
-
36
- def rate_url_validity(self, user_query: str, url: str) -> int:
37
- """ Evaluates webpage credibility based on multiple scores. """
38
- content = self.fetch_page_content(url)
39
- domain_trust = self.get_domain_trust(url)
40
- similarity_score = self.compute_similarity_score(user_query, content)
41
-
42
- # Final function rating (mock logic)
43
- func_rating = round((domain_trust + similarity_score) / 2)
44
- return func_rating
45
-
46
- # Sample Queries and URLs
47
- sample_queries = [
48
- "How does climate change impact global weather?",
49
- "What are the latest advancements in AI?",
50
- "How does diet influence mental health?",
51
- "What are the effects of space travel on astronauts?",
52
- "Is cryptocurrency a safe investment?",
53
- "What are the advantages of renewable energy?",
54
- "How does deep learning work?",
55
- "What are the health risks of 5G technology?",
56
- "Is intermittent fasting effective for weight loss?",
57
- "How do electric vehicles compare to gas cars?"
58
- ]
59
-
60
- sample_urls = [
61
- "https://www.nationalgeographic.com/environment/article/climate-change",
62
- "https://www.technologyreview.com/2023/05/01/latest-ai-advancements/",
63
- "https://www.health.harvard.edu/mind-and-mood/foods-linked-to-better-brainpower",
64
- "https://www.nasa.gov/hrp/long-term-health-risks-of-space-travel",
65
- "https://www.investopedia.com/terms/c/cryptocurrency.asp",
66
- "https://www.energy.gov/eere/renewable-energy",
67
- "https://www.ibm.com/cloud/deep-learning",
68
- "https://www.who.int/news-room/questions-and-answers/item/radiation-5g-mobile-networks-and-health",
69
- "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167940/",
70
- "https://www.tesla.com/blog/benefits-of-electric-vehicles"
71
- ]
72
-
73
- # Initialize Validator
74
  validator = URLValidator()
75
 
76
- # Prepare Data
77
- data_rows = []
78
- for query, url in zip(sample_queries, sample_urls):
79
- func_rating = validator.rate_url_validity(query, url)
80
- custom_rating = min(func_rating + 1, 5) # Adjusted user rating, max 5
81
- data_rows.append([query, url, func_rating, custom_rating])
82
-
83
- # Create DataFrame and Save to CSV
84
- csv_filename = "url_validation_results.csv"
85
- df = pd.DataFrame(data_rows, columns=["user_prompt", "url_to_check", "func_rating", "custom_rating"])
86
- df.to_csv(csv_filename, index=False)
87
-
88
- print(f"✅ CSV file '{csv_filename}' has been created successfully!")
89
-
90
- # Keep the app running so Hugging Face Space does not stop
91
- while True:
92
- time.sleep(60) # Keep running indefinitely
 
1
+ import gradio as gr
 
2
  import pandas as pd
3
+ from url_validation import URLValidator # Import your validator class
4
 
5
+ # Instantiate Validator
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  validator = URLValidator()
7
 
8
+ # Define function for Gradio UI
9
+ def validate_url(user_query, url_to_check):
10
+ result = validator.rate_url_validity(user_query, url_to_check)
11
+ return result
12
+
13
+ # Create Gradio Interface
14
+ iface = gr.Interface(
15
+ fn=validate_url,
16
+ inputs=["text", "text"],
17
+ outputs="json",
18
+ title="URL Validator",
19
+ description="Enter a query and a URL to check its credibility."
20
+ )
21
+
22
+ # Launch the Gradio App
23
+ iface.launch()