Spaces:
Sleeping
Sleeping
import requests | |
from bs4 import BeautifulSoup | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
class URLValidator: | |
""" | |
URL Validator class that evaluates the credibility of a webpage | |
using domain trust, content relevance, fact-checking, bias detection, and citations. | |
""" | |
def __init__(self): | |
# Load models once to avoid redundant API calls | |
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') | |
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection") | |
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment") | |
def fetch_page_content(self, url: str) -> str: | |
""" Fetches and extracts text content from the given URL. """ | |
try: | |
headers = {"User-Agent": "Mozilla/5.0"} # Helps bypass some bot protections | |
response = requests.get(url, timeout=10, headers=headers) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, "html.parser") | |
content = " ".join([p.text for p in soup.find_all("p")]) | |
return content if content else "Error: No readable content found on the page." | |
except requests.exceptions.Timeout: | |
return "Error: Request timed out." | |
except requests.exceptions.HTTPError as e: | |
return f"Error: HTTP {e.response.status_code} - Page may not exist." | |
except requests.exceptions.RequestException as e: | |
return f"Error: Unable to fetch URL ({str(e)})." | |
def get_domain_trust(self, url: str, content: str) -> int: | |
""" Simulated function to assess domain trust. """ | |
if "Error" in content: | |
return 0 | |
return len(url) % 5 + 1 # Mock trust rating (1-5) | |
def compute_similarity_score(self, user_query: str, content: str) -> int: | |
""" Computes semantic similarity between user query and page content. """ | |
if "Error" in content: | |
return 0 | |
return int(util.pytorch_cos_sim( | |
self.similarity_model.encode(user_query), | |
self.similarity_model.encode(content) | |
).item() * 100) | |
def check_facts(self, content: str) -> int: | |
""" Simulated function to check fact reliability. """ | |
if "Error" in content: | |
return 0 | |
return len(content) % 5 + 1 # Mock fact-check rating (1-5) | |
def detect_bias(self, content: str) -> int: | |
""" Uses NLP sentiment analysis to detect potential bias in content. """ | |
if "Error" in content: | |
return 0 | |
sentiment_result = self.sentiment_analyzer(content[:512])[0] | |
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30 | |
def get_star_rating(self, score: float) -> tuple: | |
""" Converts a score (0-100) into a 1-5 star rating. """ | |
stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale | |
return stars, "⭐" * stars | |
def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, final_score) -> str: | |
""" Generates a human-readable explanation for the score. """ | |
reasons = [] | |
if domain_trust < 50: | |
reasons.append("The source has low domain authority.") | |
if similarity_score < 50: | |
reasons.append("The content is not highly relevant to your query.") | |
if fact_check_score < 50: | |
reasons.append("Limited fact-checking verification found.") | |
if bias_score < 50: | |
reasons.append("Potential bias detected in the content.") | |
return " ".join(reasons) if reasons else "This source is highly credible and relevant." | |
def rate_url_validity(self, user_query: str, url: str): | |
""" Main function to evaluate the validity of a webpage. """ | |
content = self.fetch_page_content(url) | |
# Handle errors | |
if "Error" in content: | |
return {"Validation Error": content} | |
domain_trust = self.get_domain_trust(url, content) | |
similarity_score = self.compute_similarity_score(user_query, content) | |
fact_check_score = self.check_facts(content) | |
bias_score = self.detect_bias(content) | |
final_score = ( | |
(0.3 * domain_trust) + | |
(0.3 * similarity_score) + | |
(0.2 * fact_check_score) + | |
(0.2 * bias_score) | |
) | |
stars, icon = self.get_star_rating(final_score) | |
explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, final_score) | |
return { | |
"raw_score": { | |
"Domain Trust": domain_trust, | |
"Content Relevance": similarity_score, | |
"Fact-Check Score": fact_check_score, | |
"Bias Score": bias_score, | |
"Final Validity Score": final_score | |
}, | |
"stars": { | |
"icon": icon | |
}, | |
"explanation": explanation | |
} | |