File size: 5,529 Bytes
597dd18
 
11e62a5
597dd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e62a5
597dd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afc89a3
f37c61f
 
afc89a3
f37c61f
 
afc89a3
f37c61f
 
 
 
 
 
afc89a3
 
f37c61f
afc89a3
f37c61f
afc89a3
11e62a5
f37c61f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e62a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import requests
from bs4 import BeautifulSoup
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline

class URLValidator:
    """
    A production-ready URL validation class that evaluates the credibility of a webpage
    using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations.
    """

    def __init__(self):
        # Load models once to avoid redundant API calls
        self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
        self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
        self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")

    def fetch_page_content(self, url: str) -> str:
        """ Fetches and extracts text content from the given URL, handling errors gracefully. """
        try:
            headers = {"User-Agent": "Mozilla/5.0"}
            response = requests.get(url, timeout=10, headers=headers)
            response.raise_for_status()
            soup = BeautifulSoup(response.text, "html.parser")

            content = " ".join([p.text for p in soup.find_all("p")])
            return content if content else "Error: No readable content found on the page."
        except requests.exceptions.Timeout:
            return "Error: Request timed out."
        except requests.exceptions.HTTPError as e:
            return f"Error: HTTP {e.response.status_code} - Page may not exist."
        except requests.exceptions.RequestException as e:
            return f"Error: Unable to fetch URL ({str(e)})."

    def get_domain_trust(self, url: str, content: str) -> int:
        """ Computes the domain trust score. Uses a mock approach for now. """
        if "Error" in content:
            return 0  # If page fetch failed, trust is low
        return len(url) % 5 + 1  # Mock trust rating (1-5)

    def compute_similarity_score(self, user_query: str, content: str) -> int:
        """ Computes semantic similarity between user query and page content. """
        if "Error" in content:
            return 0
        return int(util.pytorch_cos_sim(
            self.similarity_model.encode(user_query),
            self.similarity_model.encode(content)
        ).item() * 100)

    def check_facts(self, content: str) -> int:
        """ Simulated function to check fact reliability. """
        if "Error" in content:
            return 0
        return len(content) % 5 + 1  # Mock fact-check rating (1-5)

    def detect_bias(self, content: str) -> int:
        """ Uses NLP sentiment analysis to detect potential bias in content. """
        if "Error" in content:
            return 0
        sentiment_result = self.sentiment_analyzer(content[:512])[0]
        return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30

    def get_star_rating(self, score: float) -> tuple:
        """ Converts a score (0-100) into a 1-5 star rating. """
        stars = max(1, min(5, round(score / 20)))  # Normalize 100-scale to 5-star scale
        return stars, "⭐" * stars

    def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, final_score) -> str:
        """ Generates a human-readable explanation for the score. """
        reasons = []
        if domain_trust < 50:
            reasons.append("The source has low domain authority.")
        if similarity_score < 50:
            reasons.append("The content is not highly relevant to your query.")
        if fact_check_score < 50:
            reasons.append("Limited fact-checking verification found.")
        if bias_score < 50:
            reasons.append("Potential bias detected in the content.")

        return " ".join(reasons) if reasons else "This source is highly credible and relevant."

    def rate_url_validity(self, user_query: str, url: str):
    """ Main function to evaluate the validity of a webpage. """ 
    content = self.fetch_page_content(url)

    # If content fetching failed, return a properly structured response
    if "Error" in content:
        return {
            "raw_score": {
                "Domain Trust": 0,
                "Content Relevance": 0,
                "Fact-Check Score": 0,
                "Bias Score": 0,
                "Final Validity Score": 0
            },
            "stars": {
                "icon": "❌"
            },
            "explanation": content  # Display the error message
        }

    domain_trust = self.get_domain_trust(url, content)
    similarity_score = self.compute_similarity_score(user_query, content)
    fact_check_score = self.check_facts(content)
    bias_score = self.detect_bias(content)

    final_score = (
        (0.3 * domain_trust) +
        (0.3 * similarity_score) +
        (0.2 * fact_check_score) +
        (0.2 * bias_score)
    )

    stars, icon = self.get_star_rating(final_score)
    explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, final_score)

    return {
        "raw_score": {  
            "Domain Trust": domain_trust,
            "Content Relevance": similarity_score,
            "Fact-Check Score": fact_check_score,
            "Bias Score": bias_score,
            "Final Validity Score": final_score
        },
        "stars": {
            "icon": icon
        },
        "explanation": explanation
    }