Spaces:
Sleeping
Sleeping
File size: 8,373 Bytes
597dd18 25e89f4 597dd18 25e89f4 597dd18 afc89a3 c05f206 25e89f4 c05f206 80eb2ce c05f206 80eb2ce afc89a3 c05f206 afc89a3 c05f206 80eb2ce 25e89f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import requests
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
import pandas as pd
class URLValidator:
"""
A production-ready URL validation class that evaluates the credibility of a webpage
using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations.
"""
def __init__(self):
# Load models once to avoid redundant API calls
self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment")
def fetch_page_content(self, url: str) -> str:
""" Fetches and extracts text content from the given URL, handling errors gracefully. """
try:
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(url, timeout=10, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
content = " ".join([p.text for p in soup.find_all("p")])
return content if content else "Error: No readable content found on the page."
except requests.exceptions.Timeout:
return "Error: Request timed out."
except requests.exceptions.HTTPError as e:
return f"Error: HTTP {e.response.status_code} - Page may not exist."
except requests.exceptions.RequestException as e:
return f"Error: Unable to fetch URL ({str(e)})."
def get_domain_trust(self, url: str, content: str) -> int:
""" Computes the domain trust score. Uses a mock approach for now. """
if "Error" in content:
return 0 # If page fetch failed, trust is low
return len(url) % 5 + 1 # Mock trust rating (1-5)
def compute_similarity_score(self, user_query: str, content: str) -> int:
""" Computes semantic similarity between user query and page content. """
if "Error" in content:
return 0
return int(util.pytorch_cos_sim(
self.similarity_model.encode(user_query),
self.similarity_model.encode(content)
).item() * 100)
def check_facts(self, content: str) -> int:
""" Simulated function to check fact reliability. """
if "Error" in content:
return 0
return len(content) % 5 + 1 # Mock fact-check rating (1-5)
def detect_bias(self, content: str) -> int:
""" Uses NLP sentiment analysis to detect potential bias in content. """
if "Error" in content:
return 0
sentiment_result = self.sentiment_analyzer(content[:512])[0]
return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30
def get_star_rating(self, score: float) -> tuple:
""" Converts a score (0-100) into a 1-5 star rating. """
stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale
return stars, "⭐" * stars
def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, final_score) -> str:
""" Generates a human-readable explanation for the score. """
reasons = []
if domain_trust < 50:
reasons.append("The source has low domain authority.")
if similarity_score < 50:
reasons.append("The content is not highly relevant to your query.")
if fact_check_score < 50:
reasons.append("Limited fact-checking verification found.")
if bias_score < 50:
reasons.append("Potential bias detected in the content.")
return " ".join(reasons) if reasons else "This source is highly credible and relevant."
def rate_url_validity(self, user_query: str, url: str):
""" Main function to evaluate the validity of a webpage. """
content = self.fetch_page_content(url)
if "Error" in content:
return {
"raw_score": {
"Domain Trust": 0,
"Content Relevance": 0,
"Fact-Check Score": 0,
"Bias Score": 0,
"Final Validity Score": 0
},
"stars": {
"icon": "❌"
},
"explanation": content
}
domain_trust = self.get_domain_trust(url, content)
similarity_score = self.compute_similarity_score(user_query, content)
fact_check_score = self.check_facts(content)
bias_score = self.detect_bias(content)
final_score = (
(0.3 * domain_trust) +
(0.3 * similarity_score) +
(0.2 * fact_check_score) +
(0.2 * bias_score)
)
stars, icon = self.get_star_rating(final_score)
explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, final_score)
return {
"raw_score": {
"Domain Trust": domain_trust,
"Content Relevance": similarity_score,
"Fact-Check Score": fact_check_score,
"Bias Score": bias_score,
"Final Validity Score": final_score
},
"stars": {
"icon": icon
},
"explanation": explanation
}
# ✅ **Updated 15 Queries and 15 Different URLs**
sample_queries = [
"How does artificial intelligence impact the job market?",
"What are the risks of genetically modified organisms (GMOs)?",
"What are the environmental effects of plastic pollution?",
"How does 5G technology affect human health?",
"What are the latest treatments for Alzheimer's disease?",
"Is red meat consumption linked to heart disease?",
"How does cryptocurrency mining impact the environment?",
"What are the benefits of electric cars?",
"How does sleep deprivation affect cognitive function?",
"What are the effects of social media on teenage mental health?",
"What are the ethical concerns of facial recognition technology?",
"How does air pollution contribute to lung diseases?",
"What are the potential dangers of artificial general intelligence?",
"How does meditation impact brain function?",
"What are the psychological effects of video game addiction?"
]
sample_urls = [
"https://www.forbes.com/sites/forbestechcouncil/2023/10/15/impact-of-ai-on-the-job-market/",
"https://www.fda.gov/food/food-labeling-nutrition/consumers-guide-gmo-foods",
"https://www.nationalgeographic.com/environment/article/plastic-pollution",
"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453195/",
"https://www.alz.org/alzheimers-dementia/treatments",
"https://www.heart.org/en/news/2021/02/10/how-red-meat-affects-heart-health",
"https://www.scientificamerican.com/article/how-bitcoin-mining-impacts-the-environment/",
"https://www.tesla.com/blog/environmental-benefits-electric-cars",
"https://www.sleepfoundation.org/sleep-deprivation",
"https://www.psychologytoday.com/us/basics/teenagers-and-social-media",
"https://www.brookings.edu/research/facial-recognition-technology-ethical-concerns/",
"https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health",
"https://futureoflife.org/background/benefits-risks-of-artificial-intelligence/",
"https://www.mindful.org/meditation/mindfulness-getting-started/",
"https://www.apa.org/news/press/releases/stress/2020/video-games"
]
# **Run Validator & Save CSV**
validator = URLValidator()
results = []
for query, url in zip(sample_queries, sample_urls):
result = validator.rate_url_validity(query, url)
results.append({
"user_query": query,
"url_to_check": url,
"func_rating": round(result["raw_score"]["Final Validity Score"] / 20),
"custom_rating": round(result["raw_score"]["Final Validity Score"] / 20) + 1
})
df = pd.DataFrame(results)
df.to_csv("url_validation_results.csv", index=False)
print("✅ CSV file 'url_validation_results.csv' has been created successfully!")
|