File size: 3,428 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
3d1237b
9b5b26a
 
 
 
 
 
 
06e7b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
b9a008c
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
9e4a4d5
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"
@tool
def compute_muscle_to_fat_ratio(weight: float, body_fat_percentage: float) -> str:
    """
    A tool that computes the muscle-to-fat mass ratio for a person.
    
    Args:
        weight: The person's total body weight in kilograms.
        body_fat_percentage: The person's body fat percentage (e.g., 20.0 for 20%).
    
    Returns:
        A string summarizing the computed muscle-to-fat ratio. This ratio is approximated as:
        (Lean Body Mass / Fat Mass), where Lean Body Mass = weight - fat mass and
        Fat Mass = weight * (body_fat_percentage / 100).
    
    Note:
        This is a simplified estimation. For a more accurate analysis, consider using advanced
        body composition assessments.
    """
    try:
        fat_mass = weight * (body_fat_percentage / 100)
        if fat_mass == 0:
            return "Fat mass is zero; the muscle-to-fat ratio is undefined (check the body fat percentage)."
        lean_mass = weight - fat_mass
        ratio = lean_mass / fat_mass
        return f"The estimated muscle-to-fat ratio is {ratio:.2f}."
    except Exception as e:
        return f"Error computing muscle-to-fat ratio: {str(e)}"

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,

)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,compute_muscle_to_fat_ratio], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()